MATLAB EXPO

Integrating Radar & Wireless Communication Systems: Navigating the Trend with Modeling & Simulation

Sumit Garg, MathWorks Jayamohan Govindaraj, MathWorks Jahnavi Dhulipala, MathWorks Niharika Agrawal, MathWorks Satish Thokala, MathWorks

.

MathWorks

Share the EXPO experience #MATLABEXPO

Technology Megatrends

Autonomy

Connectivity

Sensing and communications play critical role

Multifunction

Multidomain

Emerging Trends in Integrated Sensing and Communications RF Convergence

3

Mega Trends to Provide Ubiquitous Connectivity

Wireless Communication Workflow Challenges

Wireless Waveform Generator App

- Off-the-shelf waveforms : NR-TMs / FRCs
- Custom downlink & uplink waveforms
- Export waveform or generate code

Wireless Waveform Generator App

MATLAB EXPO

Integrating Radar & Wireless Communication Systems: Navigating the Trend with Modeling & Simulation

Develop radar systems with MATLAB and Simulink

Three Abstraction Levels for Support of Full Radar Life Cycle

* See Design and Simulate an FMCW Long-Range Radar (LRR) Example here

Author and simulate radar scenarios

Tracking Algorithm Development Workflow

Complex scenes include multiple radars and targets

Multiplatform Radar Network

Grid-based Tracking using Multiple Radars

MATLAB EXPO

Integrating Radar & Wireless Communication Systems: Navigating the Trend with Modeling & Simulation

End-To-End MIMO Transceiver Simulation Including Antenna Arrays

Antenna to Bits - Unified Design Platform

3D Modeling of Antenna and RF models

17

MATLAB EXPO

Integrating Radar & Wireless Communication Systems: Navigating the Trend with Modeling & Simulation

Traditional v/s Model-Based Design for FPGA/ASIC Implementation

MathWorks[®]

Top-Down Workflow : Convert Frame to Sample Based Processing

Adapt algorithms

• Use control signals

Top-Down Workflow: Floating Point to Fixed Point Conversion

Top-Down Workflow: Floating Point to Fixed Point Conversion

Top-Down Workflow: Generate HDL Codes

ZCU216

ZCU208

Generate C and HDL code for deployment on SoC platforms

MATLAB EXPO

Integrating Radar & Wireless Communication Systems: Navigating the Trend with Modeling & Simulation

6G Key Enabling Technologies

CACENA AND COMPANY

Champion Kandaridhe MHA

Asyaiche für 700 Milts channel in appen6 Gilts pand

New

CRAWNING &

MARCENESTS.

Waveform Exploration – Extended 5G Waveform

- Explore the properties and capabilities of extended 5G-waveforms:
 - Large bandwidths beyond 275 RBs
 - SCS beyond 960 kHz

OTFS: A New Waveform Candidate for 6G

- OTFS can be seen as an OFDM code with pre-coding (ISFFT)
 - Equivalence only when Heisenberg Transform identical to OFDM modulation

ISFFT = Inverse Symplectic Finite Fourier Transform

 Heisenberg Transform is a generalized OFDM with a pulse shaping filter. When pulse shaping filter is rectangular, Heisenberg Transform is identical to OFDM.

OTFS: Equalization in the Presence of High Doppler

• High Doppler with LOS and 2 additional paths

	Delay (μs)	Doppler (Hz)	Speed (km/h)
Path 1	4.50	-1297	-280
Path 2	7.21	2162	467

Reconfigurable Intelligent Surfaces (RIS)

Rx/Tx CDL array and a phase shift models the RIS

MATLAB EXPO

Integrating Radar & Wireless Communication Systems: Navigating the Trend with Modeling & Simulation

MIMO Architectures at Higher frequencies

- Frequency extension and improved spectrum utilization
 - FR2, FR3, sub-Terahertz (FR4, FR5)...
 - Carrier aggregation
- Further enhanced (massive) MIMO architectures
 - Massive MIMO, intelligent reflective surfaces
- Integration of various wireless technologies
 - Use of cellular and satellite networks NTN

MIMO Systems: Impairments and Mitigation Strategies

Impairment	Mitigation strategy	Impairment		Mitigation strategy	Impairment	Mitigation strategy
Antenna coupling, leakage, reduction of diversity	Placement, defected ground, parasitic structures	Impedance mismatches, dispersion, losses		Equalization, calibration	Non-linearity, distortion, saturation, spectral regrowth	Digital pre distortion, envelope tracking, back-off
Estimating the impact beamforming algorith	Image: state stat		Linearizing power amplifiers with digital pre-distortion			
	Impairment	Mitigation strategy		Impairment	Mitigation strategy	
	Interfering signals, desensitization	Filtering, gain control, digital receivers		Multi-path, fading, losses, polarization	Beamforming, equalization, diversity	,
	Estimating the impact of interfering signals on			Modeling RF		
	wideband	receivers				

MathWorks[®]

Antenna Coupling Affect Beamforming 270

SLL: 10.5 dB

ain: 16.3 dB @ 104

ck: -13.8 dB @

Algorithms

SLL: 10.8 dB

in: 16.2 dB @ 105

-13 9 dB & -7

270

Sources of Dispersion and Impedance Mismatches

Dispersion Requires Equalizer Compensation / Calibration

Without equalizer

With equalizer

PA Linearization: Digital Pre-Distortion (DPD) in Practice

MathWorks

Symbol number

Slot numbe

rms EVM

rms EVM peak EVM

ms EVM ··· peak EVM

PDSCH EVM Resource Grid, BWP index : "

Interfering Signals and Wideband Receivers 20 15 PDSCH EVM vs OFDM symbol, BWP index ₹ 10 🔛 Spectrum Analyzer 0 330 PDSCH EVM vs Slot, BWP index : 1 21 27 2000 214.1854 300 1000 20 ₹ 7.0927 Subcarriers 0 0 OFDM symbols PDSCH Equalized Symbols Constellation, BWP index : 1 PDSCH EVM vs Subcarrier, BWP index : 1 /BW = 32.2256 kHz RBW = 2.88000 MHz Sample Rate = 1.96608 GHz Frames = 14196 T = 0.0 270 3GPP FR2 TM3.1 Desired signal @27GHz 120 240 Az El = [60 0] 50 Power = -70dBm210 -1.5 -0.5 0.5 RE-3 RE-3 RE-4 RE-4 RE-6 RE-6 RE-7 SPECTRAL MASK CHANNEL MEL 300 80 270 8 OFDM 100MHz BW 120 240 Interferer @19GHz RMS EVM = 3.6% (image frequency) 150 210 Az El = [40 0]

Power = -70dBm

With interfering signal RMS EVM = 4.2%

38

Ray Tracing Channel Modeling and Integration into RF Simulation

• Use ray tracing to account for multiple paths in channel between antennas:

MATLAB EXPO

Integrating Radar & Wireless Communication Systems: Navigating the Trend with Modeling & Simulation

Model interference between radar altimeter and 5G base station

Reference: <u>RTCA Report</u>

Author a Scenario for Simulating Radar Altimeter

Landing 3D View

User Waveform Level Radar Model to Generate IQ Signal

Apply Signal Processing and Evaluate Radar Altimeter Performance

Tracking Scenario Designer App

📣 Tracking Scenario De	signer - untitl	led* - Traje	ctory Table						- 0
DESIGNER	TRAJECTOR	Y							
🔶 🗀 🔚	-0-		Å	-	lo Platform) 🔻 🗊 🖥 🦽	G G	ð [w
New Open Save	Plane	Car	Tower	Boat	lo Sensor)	Rotator Sector	Raster F	Run Default	Export
FILE		PLA	TFORM		SELECTION	SENSOR	SIM	IULATE LAYOUT	EXPORT
Platform Properties					form Canvas				Scenario View
urrent Platform	(No Platform	m)							
ame									
lass					-100 -			-	
Dimensions					-80 -			-	
Length (m)	Width (m)		Height (m)		-60			-	
					-40			_	
 Platform Center Offset 	t								
Initial Pose					-20				
X (m)	Y (m)		Altitude (m)		- 0			-	
Roll (°)	Pitch (°)		Yaw (°)		20			-	
					40				
Pose Estimation					60				
Radar Cross Section					60				
					80			-	
					100 -			-	
					-150 -100 -50	0 50	100	150	
						X (m)	100	100	
					(F)				
					-20 -				
					111H -40				
					0 10 20 30 40	50 60 70 Time (s)	80 90	100	
					ectory Table				
					Time (s) X (m) Y (m) Altitude	(m) Course (°) Ground	Speed (m/s) Climb	Rate (m/s) Roll	
								>	• ž

📣 MathWorks[,]

Simulation & Tracking in Autonomous Surveillance Technologies

Point objects

Land

Air

Maritime

Space

Extended objects

Outdoor

Indoor

MATLAB EXPO

Integrating Radar & Wireless Communication Systems: Navigating the Trend with Modeling & Simulation

Verification Made Easy!

Test and verify Verilog and VHDL using HDL simulators and FPGA boards

Verification Methodologies for FPGA/ASIC designs

MathWorks Tools for Wireless and Radar System Design

Integrate AI into Communication and Radar Systems

Demo Booth : Communications and Radar Systems: From Design to Deployment

Demo Booth Title	Demo Description			
System-Level Simulation of Pre6G, 5G, WLAN, and Bluetooth Networks	Model 5G networks: SRS-based SU-MIMO, custom scheduler, 3GPP reference scenario results, 38.901 channel model Model Pre6G networks Model WLAN 802.11be networks: Multilink operation (MLO) STR and eMLSR modes Model Bluetooth networks: Piconet, LE Audio, periodic advertisements, Bluetooth Me			
RF System Design and Analysis	 Showcasing FMCW application with integration of RF, RF PCB, and antenna Using AI in antenna design, analysis, and pattern reconstruction Modeling intelligent reflecting surfaces 			
Space Mission Modeling and Analysis	 Satellite dynamic and CubeSat modeling GNC algorithm and attitude control development Mission planning and analysis, constellation access mission analysis Satellite scenario generation and visualization 			
Live Stream Radar Data to MATLAB from TI mmWave Radars for Signal Processing and Tracking Applications	 Stream data for real-time object detection and tracking Process real-time IQ radar data instantly for radar signal processing Simplify TI® radar integration with MATLAB 			
Rapid Prototyping of Radar and Wireless Communications Systems on RFSoCs	 Model and simulate systems together with hardware architectures Deploy and verify radar target emulator and adaptive beamforming on RFSoCs Interface and tune RF data converter parameters directly from MATLAB 			
Accelerating Design and Verification of Mixed- Signal Systems	 Model architectural-level mixed-signal systems using specifications Generate SystemVerilog DPI-C for analog mixed-signal verification Integrate with EDA tools for behavioral-level simulation 			

Thank You

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

