
0

"Shaping Future Software Factories: Leveraging 
Model-Based Design for Scalability from Desktop to 
Cloud"

Rajat Arora, 

Automotive Products

Gaurav Dubey,

Aerospace Products



11

Panelists

Nukul Sehgal

Code Generation, 

Virtualization & 

DevOps

Gaurav Ahuja

Safety Standards, V&V 

& Code Generation

Vamshi Kumbham

MBSE, Systems & 

Software Simulation



22

The rush for Gold Software

From the news...

https://www.stellantis.com/en/investors/events/sw-day-2021

https://www.renaultgroup.com/en/news-on-air/news/the-software-republique-a-
new-ecosystem-for-innovation-in-intelligent-and-sustainable-mobility/

https://www.volkswagenag.com/en/strategy/software.html

https://www.bain.com/about/media-center/press-releases/2023/aerospace-and-
defense-executives-to-increase-engineering-and-rd-investment-over-the-next-
three-years-to-digitize-value-chains-meet-sustainability-targets/

“Software strategy is one of the key building blocks of 
Stellantis' overall strategy to build the most 
sustainable mobility for our customers.”
Carlos Tavares – Stellantis CEO

“The vehicle is no longer the central point of the 
automotive value chain, as software, electronics 
and on-board intelligence increasingly 
determine both the value and use of the vehicle 
for new mobility needs and services.”
Luca de Meo – Renault Group CEO

Build products to evolve. As a progression from the historical development 
approach of “build to last,” Aerospace & Defense developers are now looking 
to build products to evolve. From satellites constructed at a fraction of the cost 
with software that can be updated over the air with commercially available 
technology, to on-the-spot defense solutions to conflict and warfare, leaders 
must evolve models to keep pace.

Excerpt from Bain & Co Press Release by Jim Harris, Partner

https://www.stellantis.com/en/investors/events/sw-day-2021
https://www.renaultgroup.com/en/news-on-air/news/the-software-republique-a-new-ecosystem-for-innovation-in-intelligent-and-sustainable-mobility/
https://www.renaultgroup.com/en/news-on-air/news/the-software-republique-a-new-ecosystem-for-innovation-in-intelligent-and-sustainable-mobility/
https://www.volkswagenag.com/en/strategy/software.html
https://www.bain.com/about/media-center/press-releases/2023/aerospace-and-defense-executives-to-increase-engineering-and-rd-investment-over-the-next-three-years-to-digitize-value-chains-meet-sustainability-targets/
https://www.bain.com/about/media-center/press-releases/2023/aerospace-and-defense-executives-to-increase-engineering-and-rd-investment-over-the-next-three-years-to-digitize-value-chains-meet-sustainability-targets/
https://www.bain.com/about/media-center/press-releases/2023/aerospace-and-defense-executives-to-increase-engineering-and-rd-investment-over-the-next-three-years-to-digitize-value-chains-meet-sustainability-targets/
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Software Factory

Technology Driven Amalgamation of Process, People, Methods and Standards to ship safe and 

secure products with high level of agility that enhance customer comfort and experience and 

unlock new revenue streams

https://www.lockheedmartin.com/en-us/capabilities/digital-transformation/software-factory.html

https://www.forbes.com/sites/stevetengler/2023/10/10/mercedes-porsche-talk-of-car-as-a-device-and-becoming-software-factories/

https://www.press.bmwgroup.com/global/article/detail/T0439143EN/bmw-group-and-tata-technologies-aim-to-collaborate-for-the-

development-of-automotive-software-and-business-it-solutions?language=en/

https://control.com/news/northrop-grumman-and-raytheon-technologies-join-forces-to-design-

inspection-systems-for-industrial-applications/

https://www.lockheedmartin.com/en-us/capabilities/digital-transformation/software-factory.html
https://www.forbes.com/sites/stevetengler/2023/10/10/mercedes-porsche-talk-of-car-as-a-device-and-becoming-software-factories/
https://www.forbes.com/sites/stevetengler/2023/10/10/mercedes-porsche-talk-of-car-as-a-device-and-becoming-software-factories/
https://www.forbes.com/sites/stevetengler/2023/10/10/mercedes-porsche-talk-of-car-as-a-device-and-becoming-software-factories/
https://control.com/news/northrop-grumman-and-raytheon-technologies-join-forces-to-design-inspection-systems-for-industrial-applications/
https://control.com/news/northrop-grumman-and-raytheon-technologies-join-forces-to-design-inspection-systems-for-industrial-applications/
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The path forward requires four strategic clusters of action:

1. Process
– Align software development and system engineering approaches to handle 

complexity

2. People
– Collaborative, building synergies with new teams to enhance productivity

– Domain skills, re- and up-skilling the existing work force

3. Methods
– Agile, DevOps to react to changes 

– Parallelize and virtualize development to reduce dependency on physical prototypes

– “Software factory” mindset of development-process automation for speed and 

consistency

4. Standards

– Legislative regulations, functional safety, cyber-security, AUTOSAR compliance, etc. to 

ensure safety, security and reliability
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Software Factory- A Shift From Desktop to Cloud – An Industry View
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Software Factory – Handling the complexities
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Sketch system interfaces and 

elaborate incrementally
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Extend elements with your own custom metadata 

using Profiles & Stereotypes
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Analyze system characteristics and 

quantitatively evaluate choices

Endurance

4.0997877

Mass

85

PowerDraw

40 MATLAB®
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Simplify the complex with Filters and 

autogenerated Views

Full system model Filtered view

Stereotype is an ElectricalComponent  x
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Simplify the complex with Filters and 

autogenerated Views
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Trace to system requirements and refine 

requirements alongside the architecture
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Link design models to components and 

ensure consistent interfaces

Simulink® and Model-Based Design
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Software Factory – Handling the complexities

      Safety and reliability
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▪ High integrity applications development follows standards and 
guidelines 

▪ Demonstrate compliance…

ISO 26262
Functional Safety Automotive

IEC 61508
Functional Safety Industrial Automation

EN 50128
Functional Safety Railway

IEC 62061
Functional Safety Machinery

IEC 62304
Functional Safety Medical

DO 254
Functional Safety Avionics

ISO 25119
Functional Safety Agricultural Machines

DO 178C
Functional Safety Avionics

"The more certain we are about our knowledge, 

the more we should question it.”, Aristotle.
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“Even when you think you’ve tested everything 

that you can possibly imagine, you’re wrong.” [3]

- Glenn E. Reeves, Mars Pathfinder Software Team Leader
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Compliance to Standards and Guidelines

Is the design built right?

Is it too complex?

Is it ready for code generation?
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Systematic Functional Testing

Does the design meet requirements?

Is it functioning correctly?

Is it completely tested?
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Author, link, and validate requirements for designs and tests

Requirements Toolbox

Import / Export

Simulink, System Composer, 

Stateflow, MATLAB Code

Generated 

Code

External 

Requirements

Requirements 

Management 
Tools

Author / Model

Simulink Test

MATLAB Unit Test

Trace

Report 

Analyze 
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Target

Board

Desktop

Computer

C/C++

Equivalence Testing

▪ Processor in the Loop (PIL)

– Numerical equivalence, model to target code

– Execute on target board

▪ Re-use tests developed for model to test code

▪ Collect code coverage

C/C++

Generated code

▪ Software in the Loop (SIL)

– Show functional equivalence, model to code

– Execute on desktop / laptop computer

PIL

SIL

Requirements
Requirements

Model
Implementation

Model
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Formal Methods for Functional Safety

DO-333 Formal Methods Supplement

Sound analysis means that the method never asserts a property to be 

true when it may not be true” : False Negative

Source: DO-333 Supplement on Formal Methods
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Prove That Design Meets Requirements

▪ Prove design properties using formal 

requirement models

▪ Model functional and safety 

requirements

▪ Generates counter example for 

analysis and debugging

"No amount of experimentation can ever prove 

me right; a single experiment can prove me 

wrong.“, Albert Einstein
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Propulsion system 

repeatedly shut down.

Divide-by-zero error

Patients severely overdosed.

6 Killed. Race Condition

Overflow Error

GNC system malfunction.

$500M (uninsured) payload

+ $7B in development costs

$7.5B loss Overflow error

Ariane 5

“The world’s most

expensive firework”

USS Yorktown
Dead in the water

Therac 25
Fatal overdose

“Missed” Runtime Errors with Catastrophic Results
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Violations

Defects

Runtime errors

Reports
Hand Code

Model-Based Design
(MATLAB, Simulink, Stateflow)

Polyspace
C, C++

C, C++

Model-Based V&V tools

Code Generation tools

#include <assert.h>

int speed(int k)

{

 int i,j,v;

 i = 2;

 j = k+5;

 while (i < 10) {

 i++;

 j+=3;

 }

 return 1 / (i-j);

}
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Proving 
Absence
of Critical 
Defects & 
Vulnerabilities
(dozens)

Defect & 
Vulnerability 
Checkers
(hundreds)

 Coding 
Standards, 
Cybersecurity 

Guidelines

Code 
Metrics

Code Prover
→Fully Trusted Components:

• Robust, Safe, Secure

• Proven free of critical runtime 

defects and vulnerabilities

• Additional credits for standards.

Bug Finder
→High Quality, Secure, Compliant Code:

• Measurable, Maintainable, Consistent

• Very few defects or vulnerabilities

• Credits for functional safety, 

cybersecurity standards.

Polyspace Tools
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Volvo Cars Software Factory Increases Pace and Quality of 
Development with Polyspace

Challenge

Develop reliable, standards-compliant software for the next 

generation of cars

Solution

Run static code analysis with Polyspace throughout the 

software development lifecycle

Results

▪ Critical run-time errors detected before field testing

▪ Improved productivity with better code reuse

▪ ASPICE, ISO 26262, and ISO/SAE 21434 certification 

requirements met

“With Polyspace, we can ensure software 

security and quality by identifying and fixing 

critical run-time errors before every code 

merge.”

- Johannes Foufas, Volvo Cars

Volvo Cars uses Polyspace for static code checking 

throughout the development cycle.

Link to user story

https://www.mathworks.com/company/user_stories/volvo-cars-software-factory-increases-pace-and-quality-of-development-with-polyspace.html
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What have we seen !
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Software Factory – Handling the complexities

      Safety and reliability

                                    Speed, Agility and Scalability
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Model-Based Design Reference Workflow
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Model-Based Design Reference Workflow

Check 

Models

Check 

Design 

Errors

MIL Test

Coverage 

Analysis PIL TestSIL Test

Static Code 

Analysis
Gen

Code BuildSetup

▪ Define Process and Automate

– Identify Tasks

– Define Sequence

– Define Outputs

– Script the Tools

build.m

genCode.m
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Continuous Integration Workflow with MATLAB and Simulink

Simulink

Project

Commit and 

push changes 

to Git

Jenkins run 

tests

GitLab triggers 

Jenkins

Tests   

pass?

Build, generate 

code and 

package

Develop Test
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Deploy
Build

CI on CloudSource Control Server

• Run tests:

✓ MATLAB Unit Tests

✓ Simulink Test

• Compile MEX

• Generate Code 

• Package (Toolboxes, Apps)

• Publish reports

• Email Notification

• Publish to Server

• Hardware
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Development in Action
Virtual HW deployment and testing

VehicleHILMIL SIL / PIL

Can we test and refine more virtually? 

Reduce the need Controller or 

Peripheral hardware?

Application Services

High Performance 

Hardware/

Virtual Machine

Middleware

Platform Services

Higher HW abstraction:

Service-oriented architectures
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Test Vectors &   

Vehicle Behavior 
exported from 

Simulink

(Injected into 
vECUs via SOME/IP)

Inter ECU 

Communication
(via SOME/IP)

From Analysis Models → Production Software Testing
Test level 3 virtual ECUs on the cloud
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4646Learn more: MATLAB on AWS, MathWorks Reference Architecture, MathWorks CloudCenter

Scaling up with parsim on the Cloud
Different cloud computing resources for different jobs

Running 1352 Simulations

~ 18  hours in series

~ 5.2 hours on Quadcore Laptop

~ 59 mins on an m5.12xlarge EC2 instance, 24 core

MATLAB

Parallel Computing Toolbox

MATLAB Parallel Server

GPU

Multi-core 
CPU

Running 1352 Simulations

~ 22.7 mins on 5 Worker machines, 120 cores

~17 mins on 10 Worker machines, 240 cores

Worker Machine = m5.12xlarge (24 cores)

MATLAB on AWS EC2

https://github.com/mathworks-ref-arch/matlab-on-aws
https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/alternates/non-interactive/MATLAB-BATCH.md
https://www.mathworks.com/videos/what-is-mathworks-cloud-center-1651472260634.html
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Software Factory – Handling the Complexities

      Safety and Reliability

                                   Speed, Agility and Scalability
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Software Factory From a DevOps View
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Share the EXPO experience 

#MATLABEXPO

Q&A
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© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. 

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be 

trademarks or registered trademarks of their respective holders.

Thank You!!
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