
0

"Shaping Future Software Factories: Leveraging
Model-Based Design for Scalability from Desktop to
Cloud"

Rajat Arora,

Automotive Products

Gaurav Dubey,

Aerospace Products

11

Panelists

Nukul Sehgal

Code Generation,

Virtualization &

DevOps

Gaurav Ahuja

Safety Standards, V&V

& Code Generation

Vamshi Kumbham

MBSE, Systems &

Software Simulation

22

The rush for Gold Software

From the news...

https://www.stellantis.com/en/investors/events/sw-day-2021

https://www.renaultgroup.com/en/news-on-air/news/the-software-republique-a-
new-ecosystem-for-innovation-in-intelligent-and-sustainable-mobility/

https://www.volkswagenag.com/en/strategy/software.html

https://www.bain.com/about/media-center/press-releases/2023/aerospace-and-
defense-executives-to-increase-engineering-and-rd-investment-over-the-next-
three-years-to-digitize-value-chains-meet-sustainability-targets/

“Software strategy is one of the key building blocks of
Stellantis' overall strategy to build the most
sustainable mobility for our customers.”
Carlos Tavares – Stellantis CEO

“The vehicle is no longer the central point of the
automotive value chain, as software, electronics
and on-board intelligence increasingly
determine both the value and use of the vehicle
for new mobility needs and services.”
Luca de Meo – Renault Group CEO

Build products to evolve. As a progression from the historical development
approach of “build to last,” Aerospace & Defense developers are now looking
to build products to evolve. From satellites constructed at a fraction of the cost
with software that can be updated over the air with commercially available
technology, to on-the-spot defense solutions to conflict and warfare, leaders
must evolve models to keep pace.

Excerpt from Bain & Co Press Release by Jim Harris, Partner

https://www.stellantis.com/en/investors/events/sw-day-2021
https://www.renaultgroup.com/en/news-on-air/news/the-software-republique-a-new-ecosystem-for-innovation-in-intelligent-and-sustainable-mobility/
https://www.renaultgroup.com/en/news-on-air/news/the-software-republique-a-new-ecosystem-for-innovation-in-intelligent-and-sustainable-mobility/
https://www.volkswagenag.com/en/strategy/software.html
https://www.bain.com/about/media-center/press-releases/2023/aerospace-and-defense-executives-to-increase-engineering-and-rd-investment-over-the-next-three-years-to-digitize-value-chains-meet-sustainability-targets/
https://www.bain.com/about/media-center/press-releases/2023/aerospace-and-defense-executives-to-increase-engineering-and-rd-investment-over-the-next-three-years-to-digitize-value-chains-meet-sustainability-targets/
https://www.bain.com/about/media-center/press-releases/2023/aerospace-and-defense-executives-to-increase-engineering-and-rd-investment-over-the-next-three-years-to-digitize-value-chains-meet-sustainability-targets/

33

Software Factory

Technology Driven Amalgamation of Process, People, Methods and Standards to ship safe and

secure products with high level of agility that enhance customer comfort and experience and

unlock new revenue streams

https://www.lockheedmartin.com/en-us/capabilities/digital-transformation/software-factory.html

https://www.forbes.com/sites/stevetengler/2023/10/10/mercedes-porsche-talk-of-car-as-a-device-and-becoming-software-factories/

https://www.press.bmwgroup.com/global/article/detail/T0439143EN/bmw-group-and-tata-technologies-aim-to-collaborate-for-the-

development-of-automotive-software-and-business-it-solutions?language=en/

https://control.com/news/northrop-grumman-and-raytheon-technologies-join-forces-to-design-

inspection-systems-for-industrial-applications/

https://www.lockheedmartin.com/en-us/capabilities/digital-transformation/software-factory.html
https://www.forbes.com/sites/stevetengler/2023/10/10/mercedes-porsche-talk-of-car-as-a-device-and-becoming-software-factories/
https://www.forbes.com/sites/stevetengler/2023/10/10/mercedes-porsche-talk-of-car-as-a-device-and-becoming-software-factories/
https://www.forbes.com/sites/stevetengler/2023/10/10/mercedes-porsche-talk-of-car-as-a-device-and-becoming-software-factories/
https://control.com/news/northrop-grumman-and-raytheon-technologies-join-forces-to-design-inspection-systems-for-industrial-applications/
https://control.com/news/northrop-grumman-and-raytheon-technologies-join-forces-to-design-inspection-systems-for-industrial-applications/

44

The path forward requires four strategic clusters of action:

1. Process
– Align software development and system engineering approaches to handle

complexity

2. People
– Collaborative, building synergies with new teams to enhance productivity

– Domain skills, re- and up-skilling the existing work force

3. Methods
– Agile, DevOps to react to changes

– Parallelize and virtualize development to reduce dependency on physical prototypes

– “Software factory” mindset of development-process automation for speed and

consistency

4. Standards

– Legislative regulations, functional safety, cyber-security, AUTOSAR compliance, etc. to

ensure safety, security and reliability

55

Software Factory- A Shift From Desktop to Cloud – An Industry View

66

Build and

Static Testing

Aligning and Automating MBD and Code-Centric Approaches

Field

Operational
Tests

System

Engineering

Requirements and

Architecture Design

Continuous Deploy,

Test and Operate

Code and Check
“M

o
d
el

-

b
as

ed
”

Integration Testing
“C

o
d
e-

ce
n
tr
ic
”

Production artifactsSource repo CI PipelineTest cases Test results

Virtual Dynamic Testing
Virtual Integration

Virtual Scenarios, etc.
Virtual Integration

Software Factory

Environment and
Scenario models

System Model

Implementation

Models

System Models

Scenario Models

System Models

Scenario Models

System Models

Scenario Models

Generated

C/C++ Code

Object

Code

77

Software Factory – Handling the complexities

88

Build and

Static Testing

Aligning and Automating MBD and Code-Centric Approaches

Field

Operational
Tests

System

Engineering

Requirements and

Architecture Design

Continuous Deploy,

Test and Operate

Code and Check
“M

o
d
el

-

b
as

ed
”

Integration Testing
“C

o
d
e-

ce
n
tr
ic
”

Production artifactsSource repo CI PipelineTest cases Test results

Virtual Dynamic Testing
Virtual Integration

Virtual Scenarios, etc.
Virtual Integration

Software Factory

Environment and
Scenario models

System Model

Implementation

Models

System Models

Scenario Models

System Models

Scenario Models

System Models

Scenario Models

Generated

C/C++ Code

Object

Code

99

[time]

[
c
o

m
p

le
x
it
y
]

System Complexity

10

1111

Sketch system interfaces and

elaborate incrementally

1212

Extend elements with your own custom metadata

using Profiles & Stereotypes

1313

Analyze system characteristics and

quantitatively evaluate choices

Endurance

4.0997877

Mass

85

PowerDraw

40 MATLAB®

1414

Simplify the complex with Filters and

autogenerated Views

Full system model Filtered view

Stereotype is an ElectricalComponent x

15

Simplify the complex with Filters and

autogenerated Views

1616

Trace to system requirements and refine

requirements alongside the architecture

1717

Link design models to components and

ensure consistent interfaces

Simulink® and Model-Based Design

1919

Software Factory – Handling the complexities

 Safety and reliability

2020

▪ High integrity applications development follows standards and
guidelines

▪ Demonstrate compliance…

ISO 26262
Functional Safety Automotive

IEC 61508
Functional Safety Industrial Automation

EN 50128
Functional Safety Railway

IEC 62061
Functional Safety Machinery

IEC 62304
Functional Safety Medical

DO 254
Functional Safety Avionics

ISO 25119
Functional Safety Agricultural Machines

DO 178C
Functional Safety Avionics

"The more certain we are about our knowledge,

the more we should question it.”, Aristotle.

2121

“Even when you think you’ve tested everything

that you can possibly imagine, you’re wrong.” [3]

- Glenn E. Reeves, Mars Pathfinder Software Team Leader

2222

Modelling &

Simulation

Code

generation

Testing &

Verification

Shift Left

2323

Compliance to Standards and Guidelines

Is the design built right?

Is it too complex?

Is it ready for code generation?

2424

Systematic Functional Testing

Does the design meet requirements?

Is it functioning correctly?

Is it completely tested?

2525

Author, link, and validate requirements for designs and tests

Requirements Toolbox

Import / Export

Simulink, System Composer,

Stateflow, MATLAB Code

Generated

Code

External

Requirements

Requirements

Management
Tools

Author / Model

Simulink Test

MATLAB Unit Test

Trace

Report

Analyze

26

Target

Board

Desktop

Computer

C/C++

Equivalence Testing

▪ Processor in the Loop (PIL)

– Numerical equivalence, model to target code

– Execute on target board

▪ Re-use tests developed for model to test code

▪ Collect code coverage

C/C++

Generated code

▪ Software in the Loop (SIL)

– Show functional equivalence, model to code

– Execute on desktop / laptop computer

PIL

SIL

Requirements
Requirements

Model
Implementation

Model

2727

Formal Methods for Functional Safety

DO-333 Formal Methods Supplement

Sound analysis means that the method never asserts a property to be

true when it may not be true” : False Negative

Source: DO-333 Supplement on Formal Methods

2828

Prove That Design Meets Requirements

▪ Prove design properties using formal

requirement models

▪ Model functional and safety

requirements

▪ Generates counter example for

analysis and debugging

"No amount of experimentation can ever prove

me right; a single experiment can prove me

wrong.“, Albert Einstein

2929

Propulsion system

repeatedly shut down.

Divide-by-zero error

Patients severely overdosed.

6 Killed. Race Condition

Overflow Error

GNC system malfunction.

$500M (uninsured) payload

+ $7B in development costs

$7.5B loss Overflow error

Ariane 5

“The world’s most

expensive firework”

USS Yorktown
Dead in the water

Therac 25
Fatal overdose

“Missed” Runtime Errors with Catastrophic Results

3030

Violations

Defects

Runtime errors

Reports
Hand Code

Model-Based Design
(MATLAB, Simulink, Stateflow)

Polyspace
C, C++

C, C++

Model-Based V&V tools

Code Generation tools

#include <assert.h>

int speed(int k)

{

 int i,j,v;

 i = 2;

 j = k+5;

 while (i < 10) {

 i++;

 j+=3;

 }

 return 1 / (i-j);

}

3232

Proving
Absence
of Critical
Defects &
Vulnerabilities
(dozens)

Defect &
Vulnerability
Checkers
(hundreds)

 Coding
Standards,
Cybersecurity

Guidelines

Code
Metrics

Code Prover
→Fully Trusted Components:

• Robust, Safe, Secure

• Proven free of critical runtime

defects and vulnerabilities

• Additional credits for standards.

Bug Finder
→High Quality, Secure, Compliant Code:

• Measurable, Maintainable, Consistent

• Very few defects or vulnerabilities

• Credits for functional safety,

cybersecurity standards.

Polyspace Tools

3434

Volvo Cars Software Factory Increases Pace and Quality of
Development with Polyspace

Challenge

Develop reliable, standards-compliant software for the next

generation of cars

Solution

Run static code analysis with Polyspace throughout the

software development lifecycle

Results

▪ Critical run-time errors detected before field testing

▪ Improved productivity with better code reuse

▪ ASPICE, ISO 26262, and ISO/SAE 21434 certification

requirements met

“With Polyspace, we can ensure software

security and quality by identifying and fixing

critical run-time errors before every code

merge.”

- Johannes Foufas, Volvo Cars

Volvo Cars uses Polyspace for static code checking

throughout the development cycle.

Link to user story

https://www.mathworks.com/company/user_stories/volvo-cars-software-factory-increases-pace-and-quality-of-development-with-polyspace.html

3535

What have we seen !

Software

Requirements

Software

Architecture

Integrated

Object Code

S
y
s
te

m

R
e
q
u

ir
e
m

e
n
ts

Model

MIL Unit & Integration Testing

Architecture Verification

Static Model
Analysis

Static Code
Analysis

SIL Back-to-Back Testing

Generated

C/C++ Code

PIL Back-To-Back Testing

Model Verification Code Verification

3636

Software Factory – Handling the complexities

 Safety and reliability

 Speed, Agility and Scalability

3737

Model-Based Design Reference Workflow

Software

Requirements

Software

Architecture

Integrated

Object Code

S
y
s
te

m

R
e
q
u

ir
e
m

e
n
ts

Model

MIL Unit & Integration Testing

Architecture Verification

Static Model
Analysis

Static Code
Analysis

SIL Back-to-Back Testing

Generated

C/C++ Code

PIL Back-To-Back Testing

Check

Models

Check

Design

Errors

MIL Test

Coverage Analysis
PIL Test

SIL Test

Static Code

Analysis

Gen

Code
Build

3838

Model-Based Design Reference Workflow

Check

Models

Check

Design

Errors

MIL Test

Coverage

Analysis PIL TestSIL Test

Static Code

Analysis
Gen

Code BuildSetup

▪ Define Process and Automate

– Identify Tasks

– Define Sequence

– Define Outputs

– Script the Tools

build.m

genCode.m

3939

OPERATE

DEPLOY

MONITOR

Operations

TEST

DEVELOP

BUILD

Development

DevOps building blocks for Embedded Production SW

Cloud

Desktop

Edge

System Simulation

MBSE MBD

Code Generation

Model- and

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration

4040

OPERATE

DEPLOY

MONITOR

Operations

TEST

BUILD

Development

Continuous Integration for embedded production SW

Cloud

Desktop

Edge

System Simulation

MBSE MBD

Code Generation

Model- and

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration

DEVELOP

4141

Continuous Integration Workflow with MATLAB and Simulink

Simulink

Project

Commit and

push changes

to Git

Jenkins run

tests

GitLab triggers

Jenkins

Tests

pass?

Build, generate

code and

package

Develop Test
Notify and

Deploy
Build

CI on CloudSource Control Server

• Run tests:

✓ MATLAB Unit Tests

✓ Simulink Test

• Compile MEX

• Generate Code

• Package (Toolboxes, Apps)

• Publish reports

• Email Notification

• Publish to Server

• Hardware

4242

Source
Control

CI/CD
System

Pull Changes

Submit
Changes

Pipeline
 Execution

Team

Interactive
 Development

Setup
Performance
Results Integration
Debuggability

CI Debugging & Prequal

Monitor/Debug
Job Status & Results

Setup Deploy

Check

Models

Check

Design

Errors

MIL

Tests

Gen

Code

Setup Deploy

Check

Models

Check

Design

Errors

MIL

Tests

Gen

Code

Accelerating Adoption and Optimizing CI/CD for MBD

4343

Development in Action
Virtual HW deployment and testing

VehicleHILMIL SIL / PIL

Can we test and refine more virtually?

Reduce the need Controller or

Peripheral hardware?

Application Services

High Performance

Hardware/

Virtual Machine

Middleware

Platform Services

Higher HW abstraction:

Service-oriented architectures

4444

Test Vectors &

Vehicle Behavior
exported from

Simulink

(Injected into
vECUs via SOME/IP)

Inter ECU

Communication
(via SOME/IP)

From Analysis Models → Production Software Testing
Test level 3 virtual ECUs on the cloud

4545

OPERATE

DEPLOY

MONITOR

Operations

TEST

BUILD

Development

DevOps building blocks for Embedded Production SW

Cloud

Desktop

Edge

System Simulation

MBSE MBD

Code Generation

Model- and

Code-based V&V

Data

Data stores

Files

Industrial I/O TCP/IP

Containerization

Data Platforms

Deployment

• Cloud
• Edge
• Embedded systems

Lifecycle Mgmt.

DashboardsData

Files

Industrial I/O

Streaming data

TCP/IP

Continuous Integration

DEVELOP

4646Learn more: MATLAB on AWS, MathWorks Reference Architecture, MathWorks CloudCenter

Scaling up with parsim on the Cloud
Different cloud computing resources for different jobs

Running 1352 Simulations

~ 18 hours in series

~ 5.2 hours on Quadcore Laptop

~ 59 mins on an m5.12xlarge EC2 instance, 24 core

MATLAB

Parallel Computing Toolbox

MATLAB Parallel Server

GPU

Multi-core
CPU

Running 1352 Simulations

~ 22.7 mins on 5 Worker machines, 120 cores

~17 mins on 10 Worker machines, 240 cores

Worker Machine = m5.12xlarge (24 cores)

MATLAB on AWS EC2

https://github.com/mathworks-ref-arch/matlab-on-aws
https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/alternates/non-interactive/MATLAB-BATCH.md
https://www.mathworks.com/videos/what-is-mathworks-cloud-center-1651472260634.html

4747

4848

Software Factory – Handling the Complexities

 Safety and Reliability

 Speed, Agility and Scalability

4949

Build and

Static Testing

Aligning and Automating MBD and Code-Centric Approaches

Field

Operational
Tests

System

Engineering

Requirements and

Architecture Design

Continuous Deploy,

Test and Operate

Code and Check
“M

o
d
el

-

b
as

ed
”

Integration Testing
“C

o
d
e-

ce
n
tr
ic
”

Production artifactsSource repo CI PipelineTest cases Test results

Virtual Dynamic Testing
Virtual Integration

Virtual Scenarios, etc.
Virtual Integration

Software Factory

Environment and
Scenario models

System Model

Implementation

Models

System Models

Scenario Models

System Models

Scenario Models

System Models

Scenario Models

Generated

C/C++ Code

Object

Code

5050

Software Factory From a DevOps View

51

Share the EXPO experience

#MATLABEXPO

Q&A

52

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be

trademarks or registered trademarks of their respective holders.

Thank You!!

	Default Section
	Slide 0

	Intro
	Slide 1: Panelists
	Slide 2: The rush for Gold Software
	Slide 3: Software Factory
	Slide 4: The path forward requires four strategic clusters of action:
	Slide 5: Software Factory- A Shift From Desktop to Cloud – An Industry View
	Slide 6: Aligning and Automating MBD and Code-Centric Approaches

	Q1 MBSE
	Slide 7: Software Factory – Handling the complexities
	Slide 8: Aligning and Automating MBD and Code-Centric Approaches

	MBSE
	Slide 9
	Slide 10
	Slide 11: Sketch system interfaces and elaborate incrementally
	Slide 12: Extend elements with your own custom metadata using Profiles & Stereotypes
	Slide 13: Analyze system characteristics and quantitatively evaluate choices
	Slide 14: Simplify the complex with Filters and autogenerated Views
	Slide 15
	Slide 16: Trace to system requirements and refine requirements alongside the architecture
	Slide 17: Link design models to components and ensure consistent interfaces
	Slide 19: Software Factory – Handling the complexities Safety and reliability

	IVNV
	Slide 20
	Slide 21
	Slide 22: Shift Left
	Slide 23: Compliance to Standards and Guidelines
	Slide 24: Systematic Functional Testing
	Slide 25: Author, link, and validate requirements for designs and tests
	Slide 26: Equivalence Testing
	Slide 27: Formal Methods for Functional Safety
	Slide 28: Prove That Design Meets Requirements
	Slide 29: Ariane 5 “The world’s most expensive firework”
	Slide 30
	Slide 32: Polyspace Tools
	Slide 34: Volvo Cars Software Factory Increases Pace and Quality of Development with Polyspace
	Slide 35: What have we seen !

	SpeedAndScalability
	Slide 36: Software Factory – Handling the complexities Safety and reliability Speed, Agility and Scalability
	Slide 37: Model-Based Design Reference Workflow
	Slide 38: Model-Based Design Reference Workflow
	Slide 39: DevOps building blocks for Embedded Production SW
	Slide 40: Continuous Integration for embedded production SW
	Slide 41: Continuous Integration Workflow with MATLAB and Simulink
	Slide 42: Accelerating Adoption and Optimizing CI/CD for MBD
	Slide 43
	Slide 44: From Analysis Models → Production Software Testing Test level 3 virtual ECUs on the cloud
	Slide 45: DevOps building blocks for Embedded Production SW
	Slide 46: Scaling up with parsim on the Cloud Different cloud computing resources for different jobs

	Q3 CloudDevOps
	Slide 47

	Conclusion & CTA
	Slide 48: Software Factory – Handling the Complexities Safety and Reliability Speed, Agility and Scalability
	Slide 49: Aligning and Automating MBD and Code-Centric Approaches
	Slide 50: Software Factory From a DevOps View

	CTA
	Slide 51
	Slide 52

