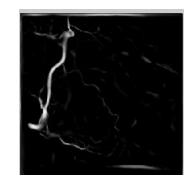
MATLAB EXPO

Edge GPU 기반 On-device Al

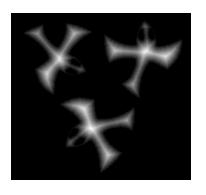
신행재, 매스웍스코리아

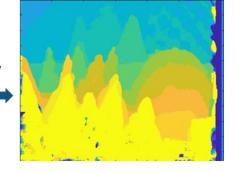
GPU Coder for Image Processing and Computer Vision


Fog removal

5x speedup

Frangi filter


3x speedup

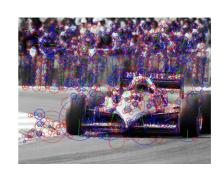

Distance transform

8x speedup

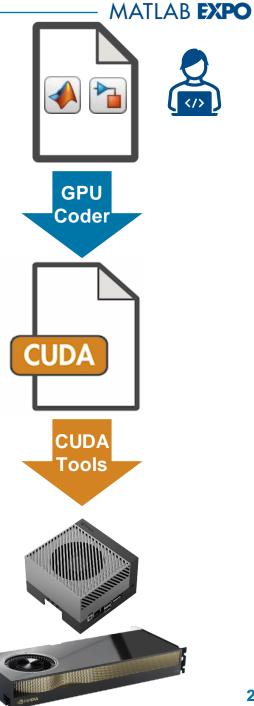
Stereo disparity

50x speedup

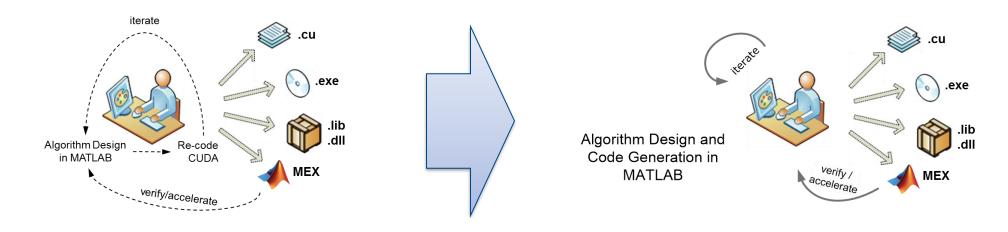
Ray tracing


18x speedup

RINDITOR


SURF feature extraction

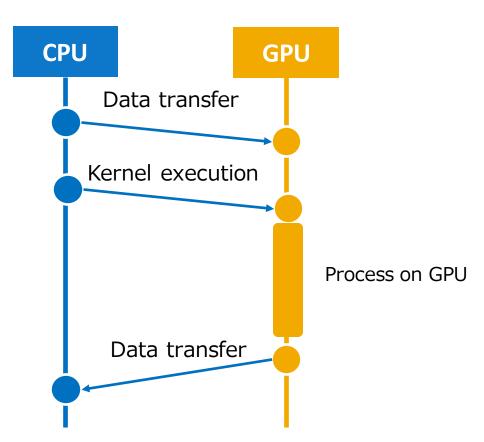
700x speedup


CUDA code generation

- Generate optimized CUDA code from MATLAB and Simulink for deep learning, embedded vision, and autonomous systems
- Generated CUDA is portable across NVIDIA desktop GPUs
- Prototype algorithms on modern GPUs including the Nvidia Data Center GPUs and Jetson AGX Orin
- Accelerate computationally intensive portions of your MATLAB code and Simulink models using generated CUDA code

Why Use GPU Coder?

Pains: Hand code


- Difficult
- Time consuming
- Manual Coding Errors
- Multiple implementations
- Expensive

Solution: GPU Coder

- Automatically convert to CUDA
- Get to CUDA faster
- Eliminate manual coding errors
- Maintain Single "Truth"
- Stay within MATLAB & Simulink at a higher level

Run Hello World on GPU


```
global void helloFromGPU()
  printf("Hello World from GPU!\n");
int main(int argc, char **argv)
                                        Microsoft Visual Studio Debug Console
  printf("Hello World from CPU!\n");
  helloFromGPU<<<1, 10>>>();
  return 0;
```

Kernel call(special syntax)

kernelFunc<<<Block_dim, Thread_dim>>>(a, b, c);

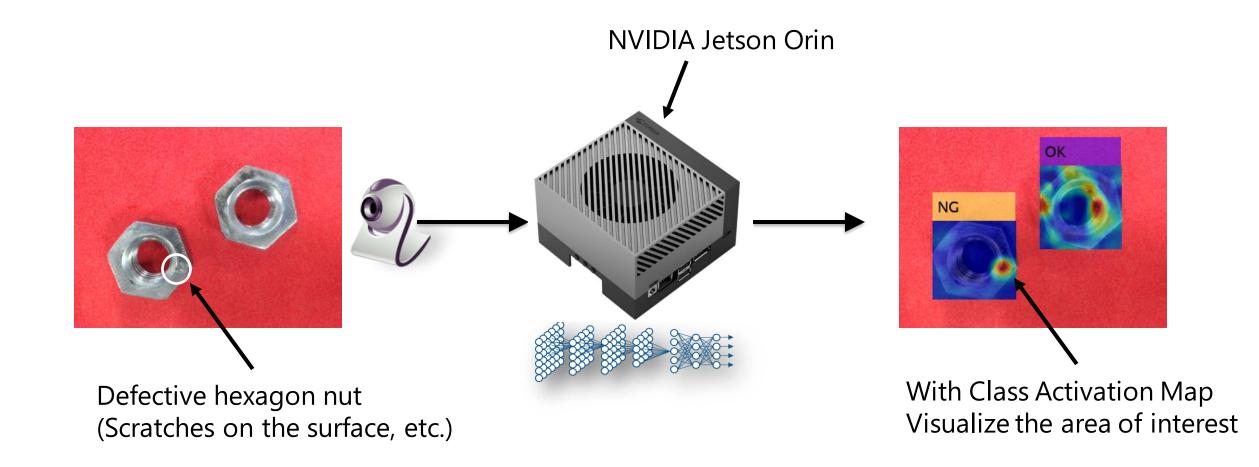
For example, if you could do this ...

Linear Algebra routine, SAXPY example

Scalarized MATLAB

```
for i = 1:length(x)
    z(i) = a .* x(i) + y(i);
end
```

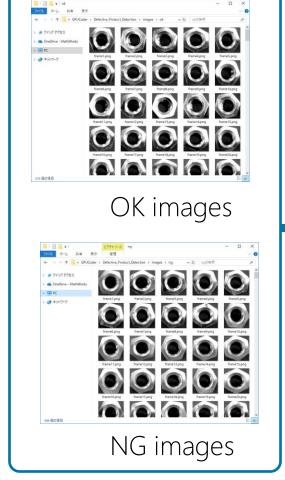

Vectorized MATLAB

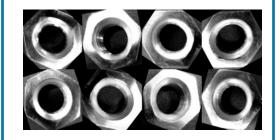

```
z = a .* x + y;
```

```
static global launch bounds (512, 1) void saxpy kernel1(const real32 T *y,
  const real32 T *x, real32 T a, real T *z)
  int i = blockIdx.x*blockDim.x + threadIdx.x;
\prod if (!(i >= 1048576)) {
    z[i] = (real T)(a * x[i] + y[i]);
void saxpy(real32 T a, const real32 T x[1048576], const real32 T y[1048576],
           real T z[1048576])
  real32 T *qpu y;
  real32 T *qpu x:
  real T *qpu z;
 cudaMalloc(&gpu z, 8388608UL);
  cudaMalloc(&gpu x, 4194304UL);
  cudaMalloc(&gpu y, 4194304UL);
 cudaMemcpy((void *)gpu y, (void *)&y[0], 4194304UL, cudaMemcpyHostToDevice);
 cudaMemcpy((void *)gpu x, (void *)&x[0], 4194304UL, cudaMemcpyHostToDevice)
  saxpy kernel1<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(qpu y, qpu x,
    apu z);
 cudaMemcpy((void *)&z[0], (void *)qpu z, 8388608UL, cudaMemcpyDeviceToHost)
  cudaFree(qpu y);
 cudaFree(gpu x);
 cudaFree(gpu z);
```

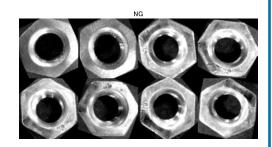
Automatic compilation from a highly extensible language to a high performance language

DEMO1: Implementation of pass / fail judgment algorithm by deep learning


Creating a CNN for Pass / Fail Judgment by Transfer Learning-Data Preparation

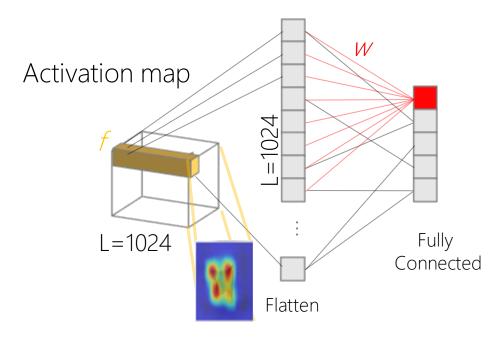

Handle image data using imageDatastore

In a random manner


Rotate and flip

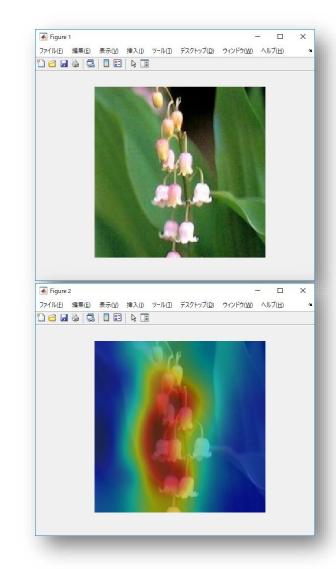
Work with train_SqueezeNet.m

OK images



NG images

- Divide the data for training and validation
 - Modify line 12
- Randomly rotate the image to increase the number of training data
 - Modify line 15 and add random rotation instructions
- Check the added data to see if the option you added is enabled
 - Use the augment function



About CAM (Class Activation Mapping)

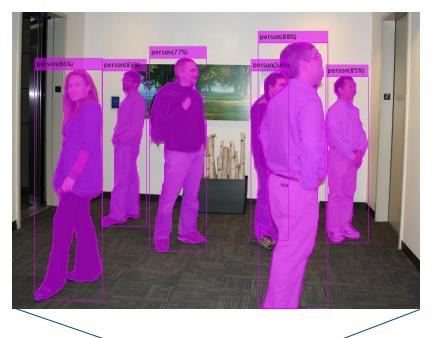
$$\Sigma$$
 f_k w_k = f₁w₁ + f₂w₂ + ... + f₁₀₂₄w₁₀₂₄

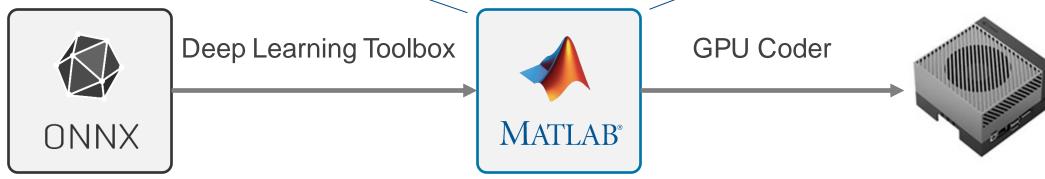
```
dotProduct =
bsxfun(@times,imageActivations,weightVector);
classActivationMap = sum(dotProduct,3);
```


Target Application Area and Products

Application Areas

- Manufacturing
- Medical Imaging
- Agriculture
- Environmental Monitoring
- loT


Products


- MATLAB Coder
- GPU Coder
- Deep Learning Toolbox
- Computer Vision Toolbox
- Image Processing Toolbox

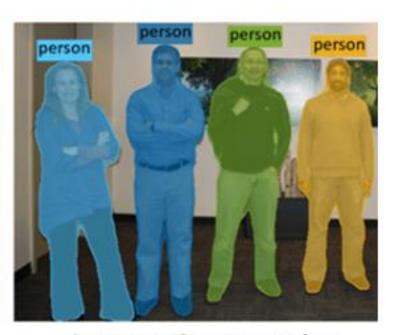
DEMO2: Instance Segmentation

Pre-trained model

Add pre/post processing

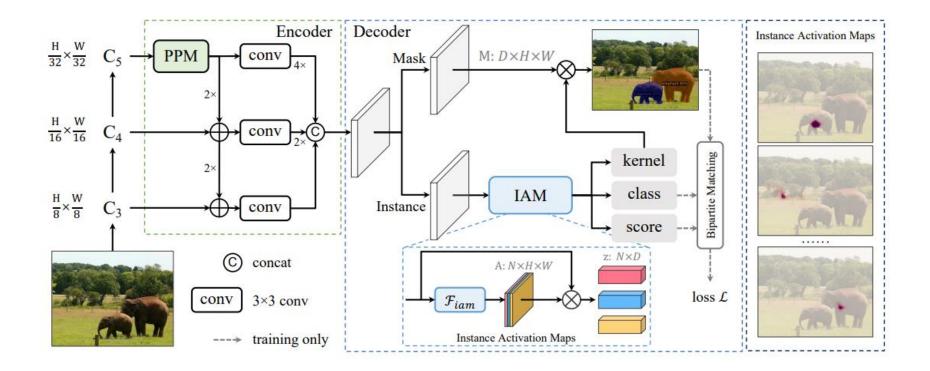
NVIDIA® Jetson™

What is Instance Segmentation?


Computer vision task that involves identifying and separating individual objects within an image

Semantic Segmentation

Object Detection



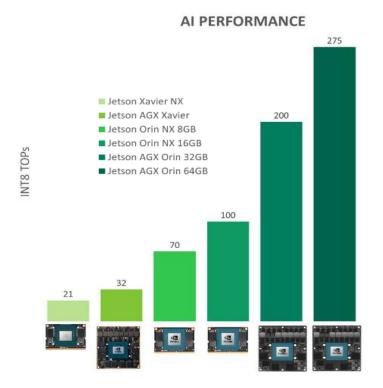
Instance Segmentation

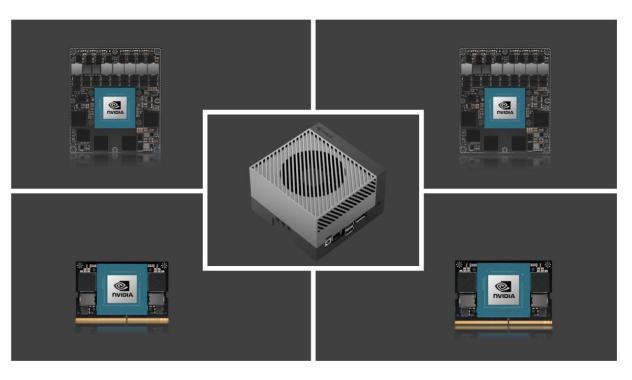
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation (CVPR2022)

A simple, efficient, and fully convolutional framework without non-maximum suppression (NMS) or sorting, and easy to deploy!

Target Application Area and Products

Application Areas


- Medical Imaging
- Autonomous Driving
- Agriculture
- Robotics
- Surveillance
- Augmented Reality(AR)


Products and Add-Ons

- MATLAB Coder
- GPU Coder
- Deep Learning Toolbox
- Computer Vision Toolbox
- Image Processing Toolbox

Delivering Server-Class Performance at the Edge with NVIDIA Jetson Orin

	Jetson AGX Orin series			Jetson Orin NX series		Jetson Orin Nano series		
	Jetson AGX Orin Developer Kit	Jetson AGX Orin 64GB	Jetson AGX Orin 32GB	Jetson Orin NX 16GB	Jetson Orin NX 8GB	Jetson Orin Nano Developer Kit	Jetson Orin Nano 8GB	Jetson Orin Nano 4GB
Al Performance	275 TOPS		200 TOPS	100 TOPS	70 TOPS	40 TOPS		20 TOPS
GPU	2048-core NVIDIA Ampere architecture GPU with 64 Tensor Cores		1792-core NVIDIA Ampere architecture GPU with 56 Tensor Cores	1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores		1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores		512-core NVIDIA Ampere architecture GPU with 16 Tensor Cores
GPU Max Frequency	1.3 GHz		930 MHz	918 MHz	765 MHz	625 MHz		

Jetson AGX Xavier vs Jetson AGX Orin Migration

Specification	Jetson AGX Xavier (64GB)	Jetson AGX Orin (64GB)			
Al Performance (INT8)	32 TOPs	275 TOPs			
GPU	Volta 512 CUDA Core 64 Tensor Core	Ampere 2048 CUDA Core 64 Tensor Core			
CPU	NVIDIA Carmel ARMv8.2 8 Core	Arm Cortex A78AE v8.2			
Memory	64GB 256-Bit LPDDR4x 137GB/s	64GB 256-Bit LPDDR5 204GB/s			
DL Accelerator	NVDLA v1.0 x 2	NVDLA v2.0 x 2			
Vision Accelerator	PVA v1.0 x 2	PVA v2.0 x 1			

MATLAB EXPO

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

