MATLAB/Simulink를 이용한 손쉬운 Unreal 3차원 시뮬레이션 환경 구축

Industrial Automation & Machinery Manufacturing, Virtual Commissioning

Automotive Sensing, SLAM, Sensor Fusion, Dynamics and Off-Highway Vehicle

Aerospace & Defense Airplane, Drone, UAM, Satellite, Jet Fighter & UGV

Robotics

Manipulators, UAV, Mobile Robots & Marine Robots

Simulink 3D Animation

Perform closed-loop, deterministic simulations with Unreal Engine

Lock-step co-simulation (solvers take turns) provides deterministic results

Benefits of Simulink 3D Animation

- Easy workflow to build a custom simulation scene and connect with MATLAB/Simulink
 - Unreal Editor
 - **RoadRunner scene import** in Sim3d Configuration Block
 - Programmatic creation using **MATLAB API**

MATLAB API and Simulink Blocks to communicate with Unreal Engine

MATLAB API run-time and edit-time import of 3D content

сору	Copy all properties from another actor
propagate	Propagate value of selected property to actor and its children
gather	Return values of selected property from all objects in selected branch
findBy	Find all actors that match specified criteria
restoreSnapshot	Restore actor to state of properties saved in specified snapshot
takeSnapshot	Take snapshot of selected properties
createMesh	Create new mesh with specified values
addMesh	Add mesh on top of current mesh
load	Load or import 3D file
save	Save actor and children to a MAT file
createShape	Create geometry for basic primitives

Simulink blocks connecting to Unreal Engine co-simulation

Simulation 3D Acto

Q	
d pop	
ATA	

CAD import, support for algorithmic scene authoring

	as	
aw	A	

Simulation 3D Pedestria

actor.createShape('box',[1 1 1]);

actor.Color = [1 0 0];

Specified with URDF, FBX, STL, X3D

Select

Specified with
primitive shapes

mulation 3D Lts

Simulation 3D Actor

×	
Y	as.
Yaw	A

Unreal Engine Co-Simulation Workflow

Benefits of Simulink 3D Animation

- Easy workflow to build a custom simulation scene and connect with MATLAB/Simulink
 - Unreal Editor
 - Programmatic creation using MATLAB API
 - RoadRunner scene import in Sim3d Configuration Block
- Available to integrate a Simulink/Simscape model with Unreal Engine for Visualization or Sensor simulation
 - Virtual cameras, LIDARs, depth sensors
 - App designer support

Benefits of Simulink 3D Animation

- Easy workflow to build a custom simulation scene and connect with MATLAB/Simulink
 - Unreal Editor
 - Programmatic creation using MATLAB API
 - **RoadRunner scene import** in Sim3d Configuration Block
- Available to integrate a Simulink/Simscape model with Unreal Engine for Visualization or Sensor simulation
 - Virtual cameras, LIDARs, depth sensors
 - App designer support

Benefits of Simulink 3D Animation

- Easy workflow to build a custom simulation scene and connect with MATLAB/Simulink
 - Unreal Editor
 - Programmatic creation using **MATLAB API**
 - RoadRunner scene import in Sim3d Configuration Block
- Available to integrate a Simulink/Simscape model with Unreal Engine for Visualization or Sensor simulation
 - Virtual cameras, LIDARs, depth sensors
 - App designer support
- Unreal Engine physics with a MATLAB/Simulink actor
 - Physics Vehicle:

evaluate position, velocity, rotation, and force feedback of a vehicle actor using Chaos physics

 Enabling physics and gravity of actor: position, velocity, etc determined by Chaos physics (collision, fluid dynamics, soft body dynamics)

Improvements of Simulink 3D Animation in R2024a

- Unreal Engine 5
 - Efficient rendering and memory usage
- Support for Linux platform
- Weather system
 - Rain particles now interact with camera lens
 - Snow
 - Volumetric clouds using 3D volume textures
 - Geo-location and time-of-day based sun configuration
- 3D Light Simulation
 - Create and add different types of lights
 - Create light array with single Light Actor
- 3D Annotation
 - Create multiple arrows and texts with vectorized inputs

Case Study: Automate Virtual Assembly Line with Two Robotic Workcells System Configuration

Case Study: Automate Virtual Assembly Line with Two Robotic Workcells **Robot Control Logic Design with Stateflow**

Release

Gripper

Case Study: Automate Virtual Assembly Line with Two Robotic Workcells Robot Control Logic Design with Stateflow

Case Study: Automate Virtual Assembly Line with Two Robotic Workcells Sensor Simulation

- The ball actor is created with a *small random offset* in position to reflect the real-life variability.
- **3D Camera Get**: provide an image to detect the ball
- **Deep Learning Object Detector:** takes the image data and outputs the bounding boxes (yolov2ObjectDetector).
- **findBallXY** MATLAB function: converts the bounding boxes to the XY-positions of the ball.
- Video Viewer: Overlay a bounding box of a detected ball on a captured image and display it.

Case Study: Automate Virtual Assembly Line with Two Robotic Workcells Visualization of Robot Motion

- During scene creation, the system imports the rigid body trees for Robots from their original URDF files to the base MATLAB workspace.
- Simulink 3D Actor block together with Get Transform blocks
- Defines actors using STL, FBX, X3D
- Enables to *freely position* any of the robot bodies regardless of kinematic constraints.
- Requires the set of joint angles into six relative poses that relate each body to their corresponding parent body.
- Simulation 3D Robot block
- Defines actors using URDF
- Enable to position the robot bodies considering kinematics constraints of the robot defined in URDF file.
- Requires robot configuration info.

Compute Robot Configuration from Target Pose Specify the Hierarchical Actor Poses

t Configuration Specify the Robot Configuration

Case Study: Automate Virtual Assembly Line with Two Robotic Workcells Simulation Result

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

