2024.06.11 | 그랜드 인터컨티넨탈 서울 파르나스

The Future and Reality of Autonomous Driving

Jae-kwan LEE, KATECH

I. Recent Trends

Mobility Technology & Industry Big Bang : only 13years

Source: US National Archives.

Source: George Grantham Bain Collection.

New York Fifth Avenue, 1913

New York Fifth Avenue, **1900**

March 2021, Lv.3 Legend "Honda SENSING Elite - Traffic Jam Pilot"

GM's Future Vision : Zero Crashes, Zero Emissions, Zero Congestion

(GM) Cadillac VTOL

Toyota e-Palette, Mobility Service Platform Provider

Mobility driven by sensing technologies and AI = "AFEELA Prototype"

Delivery to North America in Spring 2026

onda Mob

nda M

Sony Honda Mobility

Sony Honda Mobility ('22.10)

Exterior

* source : Sony Honda Mobility

Sony Honda Mobility

Sony Honda Mobility

Sony Honda Mobility

Foxconn, Mobility in Harmony Consortium (2,748 members)

Next Generation of EV, Autonomous Driving & Mobility Service Applications

Changan & Tencent, Joint Venture for Smart Mobility

长安汽车与腾讯公司 智能网联汽车合资合作签约仪式

Tencent 腾讯

2018中国"互联网+"数字经济峰会 2018 China "Internet Plus" & Digital Economy Summit

July 2018, Baidu, autonomous shuttle based on Apollo platform

April 2016, Chongqing \Rightarrow Beijing (2000km), successful test of long distance autonomous driving

* source : Changan, Tencent, Baidu

Technology Development + Consumer Demand Future Market

II. Major Issues

Safety & Security of Autonomous Driving Technology and Production

^a We assess the time it would take to compete the requisite miles with a fleet of 100 autonomous vehicles (larger than any known existing fleet) driving 24 hours a day, 365 days a year, at an average speed of 25 miles per hour.

Accident : Tesla Model3 "Autopilot", June 2020

Accident : Cruise "Driverless Taxi", October 2023

Shutdown : Ford & VW backed Argo AI, October 2022

Computing Platform : GPU/NPU parallel processing, High reliability

* source : F&S

Sensing : High performance, Deep learning, Big data, Sensor fusion

	SRR 24GHz UWB	LRR 77GHz	LIDAR	Ultra sonic	Vision	Infra Red
Short distance (0 to 2m)	****	**	****	****	**	****
Nominal distance (2 to 30m)	****	****	*****	**	**	****
Long distance (30 to 100m)	**	****	****	*	**	***
Narrow range <10deg	***	***	****	*	****	*****
Wide range >30	**	**	****	****	*****	****
Angular resolution	**	****	****	*	****	****
Object speed measurement	****	****	*	****	*	*
Bad weather operation	****	***	**	***	**	****
Blockage (impurity on sensor)	****	****	****	***	*	***
Night operation	****	****	****	****	*	****
Cost	****	****	*	****	***	**

Key

* source : F&S

Mapping : Cloud digital map, Dynamic map, Landmark

Basic Map

Road Facilities

Localization : Low cost DGPS, Dead reckoning, Digital map matching

Connectivity : High reliability, Low-delay communication

Vehicle-to-home (V2H)

A connected vehicle can be used by the owner of the car to control various home appliances such as lighting and air conditioners while sitting in the car.

Vehicle-to-cloud (V2C)

A vehicle can be connected to the cloud for over the air (OTA) software upgrades to update information including the connected module.

Vehicle-to-pedestrians (V2P)

A vehicle can be connected to smartphones and wearables (worn by pedestrians) to provide real-time information to the vehicle and the pedestrians and avoid collisions.

Vehicle-to-vehicle (V2V)

V2V technology enables cars/fleet to communicate with each other resulting in improved flow of traffic and reduction in collisions.

Vehicle-to-infrastructure (V2I)

The connected vehicle can be connected to roadside units such as traffic lights, which act as communication nodes providing various safety and traffic updates.

Vehicle-to-devices (V2D)

V2D application enables vehicle to establish connectivity with smartphone or other installed on board units (OBUs) such as infotainment systems.

Cyber Security : Hacking prevention, Vehicle security architecture

Critical Vehicle Data

- Engine control unit
- Transmission control unit
- Body controllers (locks/lights)
- Air bag control unit
- Steering, suspension, and stability

External Interfaces

- Keyless entry
- Tire pressure monitoring system
- V2x communication
- Satellite data
- Sensor and camera data

Infotainment & Telematics

- Vehicle data from OBD II, GPS coordinates, driving patterns, diagnostics
- Internet, smartphone interfacing, Bluetooth, Wi-Fi, app store
- Radio and media streaming

* source : F&S

OnStar's decision to keep track of unsubscribed vehicles and sell vehicle-related data created privacy issues. In the automated scenario, there is a high possibility of a car being compromised.

Heavy dependence remains on an Internet network, and the exchange of data is to be managed properly. Encryption of data exchange will bring third-party security solution providers into the value chain.

Safety Design : Fail-operational(ISO26262), SOTIF, Redundancy

ISO DIS 34502 : Test scenarios for automated driving systems

* source : PEGASUS

Human Interaction : UI&UX, Driving control right, HMI dialogue manager

* source : F&S

\blacksquare . Conclusion

DOT-NHTSA 12 safety elements, ISO/TS 5083 12 safety principles

Voluntary Guidance to Companies

Companies to consider and document their consideration of 12 safety elements:

- 1. Vehicle Cybersecurity
- 2. System Safety
- 3. Operational Design Domain
- 4. Object and Event Detection and Response
- 5. Fallback (Minimal Risk Condition)
- 6. Validation Methods

- 7. Human Machine Interface
- 8. Crashworthiness
- 9. Post-Crash ADS Behavior
- 10. Data Recording
- 11. Consumer Education and Training
- 12. Federal, State, and Local Laws

Strategic functions

MBSE linked standard verification & validation process

Digital engineering for safety & cyber-security of AD functions

Testing to ensure safety & cyber-security based on test scenario

Scenario Analysis & Quality Measures

- What human capacity does the application require?
- What about technical capacity?
- Is it sufficiently accepted?
- Which criteria and measures can be deducted from it?

Implementation Process

 Which tools, methods and processes are necessary?

- How can completeness of relevant test runs be ensured?
- What do the criteria and measures for these test runs look like?
- What can be tested in labs or in simulation?
 What must be tested on proving grounds, what must be tested on the road?

Reflection of Results & Embedding

- Is the concept sustainable?
- How does the process of embedding work?

0

Test scenario simulation based on digital twin

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

