MATLAB EXPO

2024.06.11 | 그랜드 인터컨티넨탈 서울 파르나스

차수축소 모델링 활용방안

김종남, 매스웍스 코리아

Ready

Common challenges

High fidelity models, such as ones from 3rd party FEA/CFD tools, are too slow for system level simulation, control design, and HIL testing.

Creating a ROM that produces desired results in terms of speed, accuracy, interpretability, etc.

Model-Based Design

Integrating AI into Model-Based Design

Integrate AI models into MBD for system-level simulation and code generation

Al for component modeling

- HIL testing and system-level simulation for high-fidelity models
- Modeling component dynamics from data when first-principles models cannot be obtained

AI for algorithm development

- Virtual sensor modeling
- Sensor fusion
- Object detection

Focus today

Al for component modeling

- HIL testing and system-level simulation for high-fidelity models
- Modeling component dynamics from data when first-principles models cannot be obtained

Reduced Order Modeling

What

- Techniques to reduce the computational complexity of a computer model
- Provide reduced, but acceptable fidelity

Why

- Enable simulation of FEA models in Simulink
- Perform hardware-in-the-loop testing
- Develop virtual sensors, Digital twins
- Enable desktop simulations for orders-ofmagnitude longer timescales

Reduced Order Modeling

Example overview

Replacing a high-fidelity jet engine turbine blade model with an AI-based reduced order model

Closed-loop temperature control

Example overview

Replacing a high-fidelity jet engine turbine blade model with an AI-based reduced order model

Example overview

Replacing a high-fidelity jet engine turbine blade model with an AI-based reduced order model

Introducing Simulink Add-On for Reduced Order Modeling

Create AI-based reduced order models (ROM)

Set up Design of Experiments (DoE)

Generate input-output data from full-order, highfidelity subsystems

Train and compare Al-based reduced order models using preconfigured templates

Export trained reduced order models into Simulink or outside of Simulink through FMUs

Generate data for training

Physical system

Simulink/Simscape

Synthetic Data Generation

Design of Experiments

Input features

Ambient Temperature

Ambient Pressure Cooling Temperature

Pulse Amplitude Ranges

Data Preparation

AI Modeling

Simulation & Te

Deployment

Synthetic Data Generation

Design of Experiments

Data Preparation

AI Modeling

Simulation & T

Deployment

16

Data-driven ROM

Data Preparation Al Modeling Simulation & Test Deployment

Session opened, engineBlade_ROMsession_results.mat

M

Al-based ROM using Neural State Space (also known as Neural ODE) Create Deep Learning-based nonlinear state-space models

1.5 0

0.2

0.4

0.6

0.8

1

time (sec)

1.2

1.4

1.6

1.8

2 ×104

Al libraries in Simulink are expanding to include more Al blocks for more applications

Integration of trained AI models into Simulink

Interface	📣 MATLAB R2023b		o x
Image:	HOME PLOTS APPS LIVE EDITOR	INSERT VIEW Search Documentation , Search Documentation ,	🔎 🌻 Kishen 👻
Image: State of the second billion	Image: Compare Image: Compar	A Normal V Image: Control Task Image: Control Task	Ā
Current circle O Definition of the processing of the current winning from the information of the processing of the current of the current of the processing of the current of	💠 🔶 🔁 🔀 📁 🕨 C: 🕨 Documents 🕨 ROMSeminar 🕨 Simulatic	on And Code Generation	<mark>م +</mark>
Inver Space Space Wite Bit despective same difference of the space of the spa	Current Folder 💿	Eve Editor - Experiment2_training1.mk	⊛ ×
If Multiple Mathematics under Mithematics (1) is 10 is	🗋 Name Size 🔺	GettingStarted_ROMSpkg.mk × Experiment2_training1.mk × turbineblade_example.m × +	
Bit Adsorbeduce, Auk 9 KB Bit Adsorbeduce, Auk 9 KB Inter-Instruction Inter-Instruction Inter-Instructin Inten-Instruction	MAT-file turbineblade_trainedNSS.mat 17 KB turbineblade_tvalidationData.mat 126 KB turbineblade_trainedLSTM.mat 146 KB Stavible-Model	Experiment to train a NSS model Train a NSS model. Hyper-parameters for training are:	Î
Name A Value 7 X randonly from the available data sets. It trainingOutput,tam M/ struct 8 testSplit = 20; 9 X BatchSize - The number of data points to use when converting signals into	Details	<pre> NumberInputLags - The number of lagged inputs to use, an integer >= 0 NumberOutputLags - The number of lagged outputs to use, an integer >= 0 NumberUtgerLags - The number of lagged outputs to use, an integer >= 0 NumberUtgerLags - The number of lagged outputs to use, an integer >= 0 NumberUtits - The number of laden units in each layer, an integer > 0 NumberUtits - The number of hidden units in each layer, an integer > 0 SampleRate - Sample rate of the model, a real > 0 The tuning follows the following automated steps: 1. Extract and resample the training data 2. Train the NSS model 3. Evaluate model on test data (if available) function output = Experiment2_training1(params,monitor) I X for testiplit - For multiple data sets the percentage of data sets to use X for testipling a double in parame (0 100). He test data sets are salerted X for testing a double in parame (0 100). } } </pre>	
Implifying Output, Instruct 8 testSplit = 20; Implifying Output, Instruct	Name 🔺 Value	7 % randomly from the available data sets.	
It frainingOutput,nss Mistruct 9 % BatchSize - The number of data points to use when converting signals into 10 % min-batches, i.e., collections of smaller signal segments. • Command Window • K >	trainingOutput_Istm 1x1 struct	8 testSplit = 20;	
	trainingOutput_nss 1x1 struct	9 10 % BatchSize - The number of data points to use when converting signals into 11 % min-batches, i.e., collections of smaller signal segments.	-
		Command Window	۲
		¢ ≫	

Simulation & Test

23

Integration of trained AI models into Simulink Simulink Profiler

	Path	Time Plot (Dark Band = Self Time)	Total Time (s)	Self Time (s)	Number of Calls
v]	etEngineBlade_AI		17.207	1.807	2014
	> LSTM		11.465	0.000	0
	Scope1		3.895	3.895	1004
C	Neural State Space Model		0.028	0.000	0
	From Workspace1	\mathbf{X}	0.008	0.008	1003
	Ambient Temperature		0.002	0.002	1003
	Cooling Temperature		0.001	0.001	1003
	Pressure		0.001	0.001	1003
	> Normalize1		0.000	0.000	0
	> Denormalize1		0.000	0.000	0
	> Denormalize		0.000	0.000	0
	> Normalize		0.000	0.000	0
			Neural	state-space mode	l is

Neural state-space model is approximately 1e6x faster than the FEA model

System-level simulation

Deploy to target with zero coding errors

Generate Library-Free C/C++ Code for Deep Learning Networks

Generate Library-Free C Code for Deep Learning Networks

Al Modeling

Simulation & Test

Deployment

Hardware-in-the-loop simulation

System-level integration and test

Hardware-in-the-loop simulation

Use ROMs outside of Simulink for development

Development

Data Preparation Al Modeling Simulation & Test Deployment

Manage AI tradeoffs for your system

Results are specific to Jet Engine Blade Example

SUBARU Uses AI Surrogate Model to Reduce Transmission Control System Analysis Time

Using MATLAB, engineers at Subaru developed a surrogate AI model to optimize transmission hydraulic systems, achieving a 99% reduction in calculation times compared to the original third-party 1D model.

Key Outcomes/Advantages:

- Achieved a 99% reduction in calculation time compared to the original 1D model
- Constructed AI surrogate model in MATLAB that can reproduce waveforms with arbitrary current, oil temperature, and source pressure readings
- Accurately reproduced waveforms, even in oil temperature ranges where the model has not been trained

The AI model can now reproduce waveforms at any source pressure, oil temperature, and current. The calculation time can be significantly reduced while ensuring the accuracy of hydraulic waveforms.

Key Takeaways

Enable	Reuse of full-order high-fidelity models for system-level simulations, Hardware- in-the-Loop (HIL) testing, nonlinear control design, and virtual sensor modeling
Explore	Various ROM techniques in MATLAB to find the best method.

- Generate synthetic data from Simulink
- Train Al Models to replace FEA model that
 computes tip displacement of a jet engine blade
- Integrate trained AI model into Simulink for control design and system-level simulation
- Generate C code and perform HIL tests

MATLAB EXPO

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

