MATLAB **EXPO**

2024.06.11 | 그랜드 인터컨티넨탈 서울 파르나스

Development of Physics-Based AI Systems:

Focusing on Neural Operator and PINN

Hyung Ju Hwang, POSTECH

Table of Contents

Part I. Data and Physics Models

Why research into physics-based AI is necessary

Reason 1.

Pure neural networks are unphysical!

RNN that cannot learn a simple ODE system

Reason 2.

There is no magic solution.

Data-driven vs. model-driven vs. data & model

Part II. Neural PDE Solvers

Deep Learning Approach to PDEs

Deep Learning Approach to PDEs : PINN

PDE Solver

- Using neural networks directly to parametrize the solution to PDEs.
- Solve one instance of PDE at a time.

Find u(t, x) satisfying $\mathcal{L}_{PDE} = f(u, u_t, u_x, u_{xx}, ...) = 0$ $\mathcal{L}_{IC} = u(0, x) - g(x) = 0$ $\mathcal{L}_{BC} = u|_{\partial\Omega} - h(t, x)|_{\partial\Omega} = 0$

Deep Learning Approach to PDEs : Operator Learning

Operator Learning

- Learning a mapping from the parameters of the PDEs to the corresponding solution.
- Learning a family of PDEs from data.

Find a map $\boldsymbol{\mathcal{G}}: \boldsymbol{g}(\boldsymbol{x}) \mapsto \boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$ satisfying $\mathcal{L}_{PDE} = f(u, u_t, u_x, u_{xx}, \dots) = 0$ $\mathcal{L}_{IC} = u(0, \boldsymbol{x}) - g(\boldsymbol{x}) = 0$ $\mathcal{L}_{BC} = u|_{\partial\Omega} - h(t, \boldsymbol{x})|_{\partial\Omega}$

Part II. Neural PDE Solvers

PINN to Forward-Inverse Problems

This part introduces several strategies to solve the below problem settings

Introduction: What is Forward-Inverse problem?

Forward problem

Find a solution of a given differential equation

Inverse problem

Estimate model parameters or coefficients of the model(latent variables) based on the observed data

Forward-Inverse problem

Solve forward and inverse problems based on data

Introduction: Forward-Inverse problems

Predicting the Growth of Lettuce

• Goal : to find the optimal growth environment to derive the daily maximum leaf weight of lettuce

Predicting the Growth of Lettuce

COVID-19 Case Data

Data Used

Status of confirmed cases by region, March 25, 2020. Period: February 7 - March 30, 2020, South Korea

	Total	Seoul	Busan		Jeju
Confirmed	681	165	10		1
Recovered	10,275	614	131		13
Deceased	269	4	3		0
Total	11,225	783	144		14
		Korea Disease Control and Prevention Agency (www.kdca.go.kr			

Cumulative Number of Positive Cases Nationwide in South Korea Daily Recovered and Deceased Numbers Nationwide in South Korea

COVID-19 Spread Prediction and Prevention Policies

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = \beta SI - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

$N \coloneqq S + I + R = 1$ (Considered as a Proportion of the Population)

COVID-19 Spread Prediction and Prevention Policies

Change Patterns : Results Using Deep Learning

COVID-19 Spread Prediction and Prevention Policies

Experiments: Transport equation

Experimental result for 1D transport equation

Experiments: Heat equation

• Experimental result for 2D heat equation with u(0,x,y)=x(1-x)y(1-y)

Experiments: Wave equation

Experimental result for 2D wave equation

Experiments: Lotka-Volterra

Experimental result for Lotka-Volterra equation

Semiconductor Heat Management

Semiconductor Heat Management - Heat Sink Based Heat Spreading Model

- Semiconductor heat dissipation model through a heat sink
- Verifying the feasibility of simulation using PINN through simple modeling

Semiconductor Heat Management - Heat Sink Based Heat Spreading Model

• Modeling using the problem of solving PDEs for three systems: Chip, Sink, and Ambient

Semiconductor Heat Management – PINN Structure

Semiconductor Heat Management – PINN Simulation Results

MATLAB **EXPO**

Semiconductor Heat Management – PINN Simulation Results(continued)

Semiconductor Heat Management – PINN Simulation Results

Applications of Neural Simulators - Predicting Battery Temperature and Lifespan

- Lithium-ion batteries emit heat during repeated charging and discharging cycles.
- This process causes degradation, affecting the battery's lifespan.
- Accurately predicting battery lifespan allows for precise timing of battery replacement.
- Managing the lifespan of individual batteries is especially challenging in large battery cell containers, not just simple single batteries

Applications of Neural Simulators - Predicting Battery Temperature and Lifespan

Battery Temperature Prediction Results Solved Using the PINN Inverse Problem Concept

(a), (b), (c) perform temperature prediction

using a basic ANN structure.

(d), (e) perform temperature prediction

using a PINN structure.

Metal Cutting

Metal Cutting

Mathematical Model

PINN Result

• It allows for rapid prediction of temperature distribution as the material, process conditions, and thermal conditions change

Part II. Neural PDE Solvers

Operator Learning

Galerkin Transformer

Neural Network

Matrix Multiplication

 $y_i = \sum_j K(i, j) u_j$

Neural Operator

Kernel Integration

 $y(x) = \int K(x, y)u(y)dy$

Advantages

- Can be applied to irregular meshes
- Broad range of applications

Disadvantages

- Vulnerable to overfitting
- Few comparative experimental results

Heatsink simulation

Fourier Neural Operator

Neural Network

 $y_i = \sum_j K(i-j)u_j$

Advantages

- High performance on regular mesh data
- Many comparative experimental results

Neural Operator

Kernel Integration

$$y(x) = \int K(x-y)u(y)dy$$

Disadvantages

- Higher computational complexity than Galerkin Transformer
- Difficult to apply to irregular meshes

Navier-Stokes Simulation

Deep Operator Network(DeepONet)

Learning an operator $G: u(x) \rightarrow G(u)(y)$ using the network

Deep Operator Network(DeepONet)

• A network trained to infer the value at a desired location y based on the measurements $\{u(x)\}$

Disadvantages

- Easy to implement
- Advantages
- First proposed model
- Abundant theoretical analysis resources

 Lower accuracy compared to other recent models (FNK, gk-Transformer)

Applications of Neural Simulators – Navier-Stokes Simulation

100 Times Faster Analysis Possible

Case 2

MATLAB EXPO

Thank you for your attention

Hyung Ju Hwang, POSTECH

hjhwang@postech.ac.kr

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

