MATLAB EXPO

2024.06.11 | 그랜드 인터컨티넨탈 서울 파르나스

MATLAB을 이용한 SerDes PHY의 IBIS-AMI Model 생성 및 호환성 검증

허철 이사 퀄리타스반도체

About Qualitas

Connect the World through High-Speed Interconnection

Qualitas Semiconductor is a leading semiconductor design company in the IP and IC market based in Korea. Renowned for our expertise in high-speed interfaces globally, we focus on crafting interconnect PHYs that seamlessly integrate analog and digital signals. As a fabless company, we specialize in providing comprehensive high-speed interconnect solutions required for complex and massive data computations in various fields, including AI, autonomous driving, data centers, AR and VR.

"We provide High-speed Interconnect Total Solution"

About Qualitas – Key Solutions

Al, Edge Computing

AI Accelerator

D2D

Other

Host

CPU

Qualitas specializes in providing SERDES, PCIe, MIPI, Display IP and Chiplet solutions

- Leading the High-speed interface IP Market as a key partner of Samsung Electronics Foundry
- Robust Design capabilities for the FinFET process

Mobile

Nobile AP

..............................

- Rich experience with advanced nodes (28, 14, 8, 5, 4nm in Samsung Foundry)
- Early access to new processes (IP design for 3nm/2nm GAAFET planned in 2025)
- Our IP solutions offer optimized performance and lower power consumption resulting in more efficient processing and cost savings

About Qualitas – Key Solutions Cont'

Hardmacro IP Softmacro IP providing fast and reliable performance with predictable quality

• Blocks that are generated using a full custom design methodology and imported into the physical design database

		100 MA
HEAD AND		CI I
		調査
		B .

• A subunit of a chip and are high-level abstractions defined at the RTL or gate level, which are not tied to a specific technology or process

Contents

Key takeaways

- IBIS & IBIS-AMI Overview
- IBIS-AMI model Generation and Compatibility
- MATLAB Toolboxes in IBIS-AMI Modeling
- Model Generation in SerDes Toolbox
- Model Verification in Simulink
- Conclusions

Key takeaways

Contents

• Key takeaways

• IBIS & IBIS-AMI Overview

- IBIS-AMI model Generation and Compatibility
- MATLAB Toolboxes in IBIS-AMI Modeling
- Model Generation in SerDes Toolbox
- Model Verification in Simulink
- Conclusions

What are IBIS(Input/Output Buffer Information Specification) models?

c_comp	0.4pr	0.5abt	0.41pr	
[Pullup]				
Voltage	I(typ)	I(min)	I(max)	
-0.8V	20mA	20mA	20mA	
-0.4V	10mA	10mA	10mA	
0V	0.0mA	0.0mA	0.0mA	
0.4V	-10mA	-10mA	-10mA	
0.8V	-20mA	-20mA	-20mA	
[Rising W	aveform]			
time	V(typ)	V(min)	V(max)
0.0ps	0.533	V	0.507V	0.56V
50.0ps	0.533	V	0.507V	0.56V
150.0ps	1.20V		1.14V	1.26V
160.0ps	1.20V		1.14V	1.26V
				5

IBIS output model

I-V Curve

V-T table

MATLAB EXPO

How are IBIS models used?

- Used for SI(Signal Integrity) simulation due to channel loss
- Pros.
- Accurate model based on full circuit simulation with model parameter
- Faster than SPICE simulation
- Cons.
- It is not applicable for complex SerDes system using FFE, DFE, CTLE, CDR etc.

What are IBIS-AMI (Algorithmic Modeling Interface) models?

• IBIS-AMI was developed and was initially approved as part of the IBIS 5.0 Specification

• AMI model is useful for a highspeed serial link's performance with an eye diagram and BER

Why using IBIS-AMI model? (1/2)

Why using IBIS-AMI model? (2/2)

• Fast end-to-end channel simulations with good accuracy

• With IBIS-AMI models and channel simulator, millions of bits can be simulated

- Effects of ISI
- Jitter (RJ, DJ)
- Cross-channel interference and more

IBIS-AMI model : AMI_Init vs. AMI_GetWave

MATLAB EXPO

IBIS-AMI model : Statistical vs. Time Domain (1/2)

IBIS-AMI model : Statistical vs. Time Domain (2/2)

- Time Domain (Bit-by-Bit) simulation
- BER extrapolation typically used below 10/(-5)
- Statistical Simulation
 - Used when TX/RX AMI models are LTI
 - The entire system is represented by its impulse response
 - Convenient for a quick analysis, but most practical systems have an RX model that is NLTV

	Traditional IBIS flow: SPICE/Transient Simulation	IBIS-AMI flow: Time Domain (Bit-by-bit) Simulation	IBIS-AMI flow: Statistical Simulation
Technology	Nodal analysis of Kirchoff's current laws	Superposition of single-bit response	Calculations based on impulse response
BER floor in one minute simulation	~10-2	~10-5	~10 ⁻¹⁸ or lower
	Analog & channel : NLTV	Analog & channel : LTI	Analog & channel : LTI
Applicability & Assumption	Tx/Rx : NLTV NLTV = non-linear and/or time varying	Tx/Rx : NLTV	Tx/Rx : LTI LTI = linear and time invariant

IBIS-AMI model : Files

Contents

- Key takeaways
- IBIS & IBIS-AMI Overview

• IBIS-AMI model Generation and Compatibility

- MATLAB Toolboxes in IBIS-AMI Modeling
- Model Generation in SerDes Toolbox
- Model Verification in Simulink
- Conclusions

IBIS-AMI model Generation

- Algorithmic model is a compiled executable
- AMI model development requires many skills :
- Master C/C++ coding skills
- Guarantee coding compatibility across platforms
- Compile and link program both Windows and Linux

IBIS-AMI model Compatibility

IBIS-AMI model Provider

Did I write the code that is compatible with all platform/OSs and compilers?
Who puts everything together into an IBIS file:

• Did I mess up 64bits and 32bits dll/so files in the IBIS file?

IBIS-AMI model User

• Why doesn't this AMI model support my OS? Did I do anything wrong with them?

Contents

- Key takeaways
- IBIS & IBIS-AMI Overview
- IBIS-AMI model Generation and Compatibility
- MATLAB Toolboxes in IBIS-AMI Modeling
- Model Generation in SerDes Toolbox
- Model Verification in Simulink
- Conclusions

IBIS-AMI model Generation and Verification workflow using MATLAB

Floorplan

Architectural design

IBIS-AMI model generation

IBIS-AMI model generation (1/3)

- TX & RX with SerDes Toolbox building blocks
- Exported Simulink model and channel simulation

TX to RX Link TX/RX with SerDes Toolbox building blocks

IBIS-AMI model generation (2/3)

- SerDes IBIS-AMI Manager configurations
- Export GetWave, Init, or
 - Dual IBIS-AMI models

SerDes IBIS-AMI Manager	- 🗆 ×			- 5	×
Export IBIS AMI - Tx AMI - Rx		x		E 5 5 4 2 + 9	• •
Model Configuration Tx and Rx UO IBIS Model Name Redriver Retirmer	IBIS Settings Tx model name serdes_tx Rx model name serdes_rx Tx and Rx corner percentage 10	7 Vi Pack * Forward Simulate	Data Logic Bird's-Eye nspector Analyzer Scope	Simulation Manager REVIEW RESULTS	
AMI Model Settings - Tx	AMI Model Settings - Rx		-		•
Model Type ● Dual model ○ GetWave only Int only Bits to ignore 10 File Creation Options Models to export ● Both Tx and Rx □ Bits file ● Both Tx and Rx □ Tx only ○ Rx only ♥ DLL file(s) Target directory C:MATLAB	Model Type Dual model GetWave only Init only Bits to ignore 1000 Serdes.tbs the Format for Modulation Export Close Close POut - Dopen SerDes IBIS-AMI M	hes Toolbox model.	nel WaveOut	Naveln Rx WaveOut 🕞 D1 ►	
©# 12. ≫ ■ ⊾		OK Cancel Help Apply		Eye Di	agram
Ready		155%		FixedSt	epDiscret

IBIS-AMI model generation (3/3)

ଞ - ପ୍

- Simulink Coder in MATLAB
- For Linux Compatibility, Simulink Coder is solution

	타깃 선택				
터 가져오기/내보내기 여사 및 데이터형	시스템 타깃 파일: lert.tic				
22 2 10118	설명: Embe	dded Coder			
레어 구현	언어: C++	•			
잠조 네이셔 타기	언어 표준: C89/0	C90 (ANSI)			
생성					
박화 프	일드 프도세스				
4	코드만 생성				
별자	코드 및 아티팩트 패키	1정			
용자 지정 코드	툴체인: IBIS-AMI GN	↓U gcc/g++ gmake (64-bit Linux)			
1페이스 E 스타잌					
=	빌드 구성 Compatibility				
드 배치	▼ 툴체인 세부 정보				
기터형 대제	튤	옵션			
	C Compiler	-c \$(C_STANDARD_OPTS) -fPIC -00			
	Linker	-shared -WI,-rpath,"\$(MATLAB_ARCH_BIN)",-L"\$(MATLAB_ARCH_BIN)" -WI,no-undefined			
	Shared Library Linke	-shared -WI,-rpath,"\$(MATLAB_ARCH_BIN)",-L"\$(MATLAB_ARCH_BIN)" -WI,no-undefined			
	C++ Compiler	-c \$(CPP_STANDARD_OPTS) -fPIC -O0			
	C++ Linker	-shared -WI,-rpath,"\$(MATLAB_ARCH_BIN)",-L"\$(MATLAB_ARCH_BIN)" -WI,no-undefined -WI,wrap=memcpy -static-			
	C++ Shared Library Link	inker -shared -WI,-rpath,"\$(MATLAB_ARCH_BIN)",-L"\$(MATLAB_ARCH_BIN)" -WI,no-undefined			
	Archiver	ruvs			
	Download	<비어 있음>			
	Execute	<비어 있음>			
	Make Tool	-f\$(MAKEFILE)			
	코드 생성 목표				
	목표 선택: 디버그	▼			
	코드 생성 저에 모델 검사	□ □ 기 모델 검사			

IBIS-AMI model Verification (1/2)

• MATLAB SI toolbox simulation

MATLAB EXPO

IBIS-AMI model Verification (2/2)

• Spice simulation

Contents

- Key takeaways
- IBIS & IBIS-AMI Overview
- IBIS-AMI model Generation and Compatibility
- MATLAB Toolboxes in IBIS-AMI Modeling
- Model Generation in SerDes Toolbox
- Model Verification in Simulink

Conclusions

Key Outcomes/Advantages

- Reduced development time for the IBIS-AMI model by 30-40% using SerDes Toolbox
- Eliminated Linux compatibility issues, saving about 40% of time needed for model management
- Enable designers to collaborate more easily and effectively for Model-Based Design using Simulink

Installed Matlab and IBIS-AMI generation Server information						
OS GLIBC ver. GLIBCXX ver. CXXABI ver. GCC ver.						
CentOS 7.9.2009	2.17	3.4.19	1.3.7	4.8.5		

IBIS-AMI verification Server information					Simulink Coder	IBIS-AMI verification Tool	IBIS-AMI verification Results
Server OS	GLIBC ver.	GLIBCXX ver.	CXXABI ver.	GCC ver.	Before/After make -f Tx(Rx).mk	Hspice(Synopsys)	Error Log
CantOS 7.0.2000	2.17	3.4.19	1.3.7	4.8.5	Before	0	-
CentOS 7.9.2009	2.17	3.4.19	1.3.7	4.8.5	After	0	-
De alle et 7.0	2.17	3.4.19	1.3.7	4.8.5	Before	0	-
Rednat 7.9	2.17	3.4.19	1.3.7	4.8.5	After	0	-
CentOS 6.10	2.12	3.4.13	1.3.3	4.4.7	Before	X	GLIBC_2.14 not found
	2.12	3.4.13	1.3.3	4.4.7	After	0	-

Future Opportunities

Accuracy vs. Speed \rightarrow Optimal Accuracy

Reflect silicon behavior across P.V.T

Reduced regression using optimal methodology

MATLAB EXPO

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

