EVERSURCE

November 13–14, 2024 | Online

Implementation of a Probabilistic Power Flow System at Eversource Energy

John Kreso, Eversource john.kreso@eversource.com

Steffen Ziegler, Eversource steffen.ziegler@eversource.com

Agenda

- 1. Introduction
- 2. Purpose of the Probabilistic Load Flow (PLF) automation
- 3. Goals of the Probabilistic Load Flow automation
- 4. General flow for a PLF system
- 5. Synergi Solver integration in the IDE (Integrated Development Environment)
- 6. Scenario examples and results (visualization)
- 7. Project progress

delivery company with 4 million Connecticut, Massachusetts and New Hampshire.

New England's Largest Energy Delivery Company

We operate more than:

- 4,250 circuit miles of transmission lines
- 72,000 pole miles of distribution lines
- 575 substations
- 6,450 miles of natural gas distribution pipelines
- 3,600 miles of water mains across our service territory

Our customers:

- Electricity: 3.2 million customers
- Natural gas: 505,000 customers (MA and CT)
- Water: 230,000 customers

Clean Energy:

- Solar (~ 1 GW) and growing
- Offshore Wind (Oersted partnership)

Purpose of the Probabilistic Load Flow (PLF) Automation

Regulatory environment and oversight

- Received funding from the MA Department of Public Utilities (DPU) to future-plan the distribution system to include significant unknowns based on forecasts for Distributed Energy Resources (DERs)
- Electric Sector Modernization Plan (ESMP) details how to reach the DPU's established decarbonization goals
- Planning to accommodate these additions requires significant upgrades and redesign of the integrated energy grid

Goal of the Probabilistic Load Flow (PLF) Automation

- What is Probabilistic Modeling
 - □ Probabilistic modeling of a power grid is a technique used to assess the reliability and performance of a power system under different operating conditions and uncertainties.
- > What are the goals of the automation:
 - Ability to use probability distributions of uncertain input variables to run a Monte Carlo or alternative distribution simulation, modeling on a large scale, in a probabilistic load flow model.
 - □ The technical capabilities to evaluate the results using advanced data analytics, data visualization and decision-making processes.

What base variables need to be probabilistically considered

- Photovoltaic (PV) Installations
 - By location
 - □ Size [kW]
 - □ Time-based irradiance profiles (8760 profiles)
- Electric Vehicle (EV)
 - By location
 Installed charger size [kW]
 Time-based travel patterns

Integrated Development Environment

Hardware system supporting Probabilistic Load Flow

- > Power Flow Calculations $(10^5 10^6)$
- Processing of electrical power flows scenarios
- Synergi Solver 6.27 (64-bit)
- It is critical to parallelize the processing of large numbers of electrical power flow scenarios.
- The MATLAB Parallel Computing Toolbox allows the Synergi Power Flow Solver (COM) to be parallelized into multiple individual instances.
- The Probabilistic Load Flow project is supported with two computational processing machines, each having the following properties:
 - 16 TB of Solid Stage Hard drives
 - \circ 512 GB of RAM

9

- CPUs: 2x Intel Xeon Gold 6448Y (64 cores total)
- o GPUs: 4 x NVIDIA RTX A6000

All grid models for one State can be processed in 80 seconds

Probabilistic parameter variations

Probabilistically moving of Load and Generation

Random Section assignment for:

LocationSize [kW]

Voltage and Load violations

- Voltage violations
 - Voltages need to be constrained to a small and standardized range around operating voltage. Reliability of standard electrical equipment depends on the Utility Company to deliver the correct voltages.
 - Any voltages beyond the acceptable ranges need to be corrected for, either with additional grid equipment or different grid settings.
- Load violations:
 - □ The power flow in the electrical grid depends on customer's load behavior and the irradiance dependent injection of renewable energy.
 - Grid equipment needs to be pro-actively upgraded <u>before</u> grid power flows exceed critical load thresholds.

Probabilistic voltage results vs. grid nodes (example)

MATLAB EXPO

Probabilistic voltage results vs. one grid node (example)

MATLAB EXPO

Heatmapping of risk areas

MATLAB EXPO

Probabilistic Planning – risk-based decision making

Risk = Probability x Violation Consequence

Risk tolerance defines what risks are acceptable

Credit: Jonathan Flinn, DNV

Unacceptable risks must be managed – either control probability or control consequence.

Adding reclosers reduces consequence of failure by reducing duration of outage. Adding Tree-Wire overhead conductors also reduces consequence.

Re-conductoring reduces the probability of failure by increasing the current capacity of the line.

16

Project phases

Acknowledgements

- ✤ Gerhard Walker
- Bill Liston
- ✤ Jie Morgan
- Sophia Zhang
- Gabrielle Nelson
- Misha Tatinets
- Ethan Young
- ✤ Alex Rodriguez
- DNV development team
- MathWorks development team

MATLAB **EXPO**

Thank you

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

