EVERSOURCE

November 13–14, 2024 | Online

Implementation of a Probabilistic Power Flow System at Eversource Energy

John Kreso, Eversource

john.kreso@eversource.com steffen.ziegler@eversource.comSteffen Ziegler, Eversource

Agenda

- 1. Introduction
- 2. Purpose of the Probabilistic Load Flow (PLF) automation
- 3. Goals of the Probabilistic Load Flow automation
- 4. General flow for a PLF system
- Agenda

1. Introduction

2. Purpose of the Probabilistic Load Flow (PLF) automation

3. Goals of the Probabilistic Load Flow automation

4. General flow for a PLF system

5. Synergi Solver integration in the IDE (Integrate Environment)
- 6. Scenario examples and results (visualization)
- 7. Project progress

 1

New England's Largest Energy Delivery Company • 4,250 circuit miles of transmission lines
• 4,250 circuit miles of transmission lines
• 72,000 pole miles of distribution lines
• 575 substations
• 6,450 miles of natural gas distribution pipelines • 73,000 miles of values and the miles of distribution lines
• 72,000 pole miles of distribution lines
• 755 substations
• 6,450 miles of natural gas distribution pipelin New England's Largest Energy De

We operate more than:

• 4,250 circuit miles of transmission lines

• 72,000 pole miles of distribution lines

• 575 substations

• 6,450 miles of natural gas distribution pipelines

• 3,60 **New England's Largest Energy Delive**
 We operate more than:

• 4,250 circuit miles of transmission lines

• 72,000 pole miles of distribution lines

• 575 substations

• 6,450 miles of natural gas distribution pipelines **New England's Largest Energy Delivery (**
 We operate more than:

• 4,250 circuit miles of transmission lines

• 72,000 pole miles of distribution lines

• 575 substations

• 6,450 miles of natural gas distribution pipel

We operate more than:

-
-
-
-
- **We operate more than:**

 4,250 circuit miles of transmission lines

 72,000 pole miles of distribution lines

 6,450 miles of natural gas distribution pipelines

 3,600 miles of water mains across our service terri
 • 4,250 circuit miles of transmission lines

• 72,000 pole miles of distribution lines

• 575 substations

• 6,450 miles of natural gas distribution pipelines

• 3,600 miles of water mains across our service territory
 O • 4,250 circuit miles of transmission lines
• 72,000 pole miles of distribution lines
• 575 substations
• 6,450 miles of natural gas distribution pipelines
• 3,600 miles of water mains across our service terr
Our custome

Our customers:

-
-
-

Clean Energy:

-
-

Purpose of the Probabilistic Load Flow (PLF) Automation

- Purpose of the Probabilistic Load Flow (PLF) Autom
→ Regulatory environment and oversight
→ Received funding from the MA Department of Public Utilities (DPI
distribution system to include significant unknowns based on for \Box Received funding from the MA Department of Public Utilities (DPU) to future-plan the ose of the Probabilistic Load Flow (PLF) Automation
Distribution system to include significant of Public Utilities (DPU) to future-plan the
distribution system to include significant unknowns based on forecasts for
Distrib Distributed Energy Resources (DERs) Example 19 and the Management of Public Utilities (DPU) to future-plan the distribution system to include significant unknowns based on forecasts for Distributed Energy Resources (DERs)

The Electric Sector Modernization ulatory environment and oversight
Received funding from the MA Department of Public Utilities (DPU) to future-pla
distribution system to include significant unknowns based on forecasts for
Distributed Energy Resources (DER
	- Electric Sector Modernization Plan (ESMP) details how to reach the DPU's established decarbonization goals
	-

Goal of the Probabilistic Load Flow (PLF) Automation

- \triangleright What is Probabilistic Modeling
- **Example 18 of the Probabilistic Load Flow (PLF) Automation**
Probabilistic modeling of a power grid is a technique used to assess the reliability and
performance of a power system under different operating conditions and performance of a power system under different operating conditions and uncertainties.
- \triangleright What are the goals of the automation:
	- Ability to use probability distributions of uncertain input variables to run a Monte Carlo or alternative distribution simulation, modeling on a large scale, in a probabilistic load flow model.
	- \Box The technical capabilities to evaluate the results using advanced data analytics, data visualization and decision-making processes.

What base variables need to be probabilistically considered

- \triangleright Photovoltaic (PV) Installations
	- □ By location
	- □ Size [kW]
	- \Box Time-based irradiance profiles (8760 profiles)
- \triangleright Electric Vehicle (EV)
	- \square By location \square Installed charger size [kW] **□ Time-based travel patterns**

Integrated Development Environment

Hardware system supporting Probabilistic Load Flow orting Probabilistic Load Flow
– 10⁶)
flows scenarios

- \triangleright Power Flow Calculations (10⁵ 10⁶))
- Processing of electrical power flows scenarios
-
- Hardware system supporting Probabilist

> Power Flow Calculations (10⁵ 10⁶)

> Processing of electrical power flows scenarios

> Synergi Solver 6.27 (64-bit)

> It is critical to **parallelize** the processing of larg \triangleright It is critical to **parallelize** the processing of large numbers of electrical power flow scenarios. All grid models for one State can be processed in 80 seconds

All grid models for one State can be parallelized into multiple individual instances.

All grid models for one State Can be parallelized into multiple individu
- The Matrix experiment of the Matrix Computing Tools and The Matrix Computer of New The Matrix of Netrical power flows are arise

The Matrix Synergi Solver 6.27 (64-bit)

The Matrix allows the Synergi Power Flow Solver (CO be parallelized into multiple individual instances.
- \triangleright The Probabilistic Load Flow project is supported with two computational processing machines, each having the following properties:
	- o 16 TB of Solid Stage Hard drives
	- o 512 GB of RAM
	- o CPUs: 2x Intel Xeon Gold 6448Y (64 cores total)
	- o GPUs: 4 x NVIDIA RTX A6000

$\frac{1}{9}$ \rightarrow All grid models for one State can be processed in 80 seconds

Probabilistic parameter variations

Probabilistically moving of Load and Generation

Random Section assignment for:

L Location □ Size [kW]

Voltage and Load violations

- \triangleright Voltage violations
	- \Box Voltages need to be constrained to a small and standardized range around operating voltage. Reliability of standard electrical equipment depends on the Utility Company to deliver the correct voltages. \square Voltages need to be constrained to a small and standardized range around operating
voltage. Reliability of standard electrical equipment depends on the Utility Company to
deliver the correct voltages.
Any voltages be
	- \Box Any voltages beyond the acceptable ranges need to be corrected for, either with additional grid equipment or different grid settings.
- \triangleright Load violations:
	- \Box The power flow in the electrical grid depends on customer's load behavior and the irradiance dependent injection of renewable energy.
	- load thresholds.

Probabilistic voltage results vs. grid nodes (example)

Probabilistic voltage results vs. one grid node (example)

Heatmapping of risk areas

Probabilistic Planning – risk-based decision making

 $Risk = (Probability) \times (Violation Consequence)$ Probabilistic Planning – risk-based decision making

Risk tolerance defines what risks are acceptable

Risk tolerance defines what risks are acceptable

Examples are acceptable probability or control consequence.

Adding r

Credit: Jonathan Flinn, DNV

probability or control consequence.

Adding reclosers reduces consequence of failure by reducing duration of outage. Adding Tree-Wire **Consequence**

Unacceptable risks must be managed – either control

probability or control consequence.

Adding reclosers reduces consequence of failure by

reducing duration of outage. Adding Tree-Wire

overhead conductor

increasing the current capacity of the line.

16

Project phases

Acknowledgements

- **❖ Gerhard Walker**
- **❖ Bill Liston**
- Jie Morgan
- **❖ Sophia Zhang**
- **❖ Gabrielle Nelson**
- ❖ Misha Tatinets
- Ethan Young
- **❖ Alex Rodriguez**
- DNV development team
- MathWorks development team

MATLAB EXPO

Thank you

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

