MATLAB EXPO

November 13–14, 2024 | Online

# Al in the Era of Voice Interfaces and LLM: From Embedded to Cloud

Gabriele Bunkheila, MathWorks







## Where is the AI behind a voice assistant?





Users \* gounkher \* Onebrive - Mathiworks \* Docs \* Material \* Work \* 2024-QT \* CAPO Demo Diatong \* IIm-Ilve-Volce-assistant \*



[]]]\_]



### MATLAB EXPO

**Trigger Word** 

Detector



### Speech-to-text





Knowledge and understanding

Text-to-speech

MATLAB EXPO

Our prototype includes several different uses of AI, usually deployed across embedded, local machines, and cloud



## Using AI with MATLAB



## Using AI with MATLAB



## Develop embedded Al models



A Trigger Word Detection model is often designed, trained, tested for, and embedded in the voice-enabled device



Trigger Word Detector Developing AI models for real-world embedded applications involves several tasks and different types of expertise

|            | <b>*</b>  |            |              | -          |             | #          | ++        |          |         |
|------------|-----------|------------|--------------|------------|-------------|------------|-----------|----------|---------|
| Net Matata | Twy Matan | Two Matter | They Mattack | ney Mattab | They Making | hey Muthan | Ney Matao | tay Mart | trey Ma |

Labeled training data



**Model training** 



## **Deep network design**



## **Compression and deployment**

# Your handouts include links to code examples on all these topics

#### Train Deep Learning Network for Speech Command Recognition

Step 1 of 5 in AI for Speech Command Recognition

•------



#### Train Speech Command Recognition Model Using Deep Learning

This example shows how to train a deep learning model that detects the presence of speech commands in audio. The ex To use a pretrained speech command recognition system, see Speech Command Recognition Using Deep Learning.





#### Label Spoken Words in Audio Signals

Use Signal Labeler to label spoken words in an audio signal.



#### Prune and Quantize Convolutional Neural Network for Speech Recognition

Compress a convolutional neural network (CNN) to prepare it for deployment on an embedded system.



#### Speech Command Recognition Code Generation on Raspberry Pi

Generate code and deploy feature extraction and speech command recognition network on Raspberry Pi hardware.









### Audio Toolbox Interface for SpeechBrain and Torchaudio Libraries

#### by MathWorks Audio Toolbox Team STAFF

Deep Learning models supporting Audio Toolbox AI-powered functions for speech and audio signal processing 
Follow





| %% Listen to mix                                         |  |  |  |  |  |
|----------------------------------------------------------|--|--|--|--|--|
| sound(mix, fs)                                           |  |  |  |  |  |
| %% Separate sources using AI model                       |  |  |  |  |  |
| <pre>sources = separateSpeakers(x,fs,NumSpeakers=3</pre> |  |  |  |  |  |
| %% Play source 1                                         |  |  |  |  |  |
| <pre>sound(sources(:,1), fs)</pre>                       |  |  |  |  |  |
| %% Play source 2                                         |  |  |  |  |  |
| <pre>sound(sources(:,2), fs)</pre>                       |  |  |  |  |  |
| %% Play source 3                                         |  |  |  |  |  |
| <pre>sound(sources(:,3), fs)</pre>                       |  |  |  |  |  |

## separateSpeakers



classifySound



### enhanceSpeech



deepSignalAnomalyDetector MATLAB EXPO

# Using AI with MATLAB



## Through connecting to Generative AI servers, you can integrate Large Language Models in your MATLAB programs

| 6        | <pre>msghist = openAIMessages;</pre>                                                                                                                      |               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|          | Create prompt and generate response<br>Prompt                                                                                                             |               |
| 7        | <pre>text = "What is the AI behind a voice interface?"</pre>                                                                                              |               |
|          | text = "What is the AI behind a voice interface?"                                                                                                         | Knowledge an  |
|          | Add current prompt to existing message history                                                                                                            | understanding |
| 8<br>9   | <pre>msghist = addUserMessage(msghist, text); msghist.Messages{end}</pre>                                                                                 |               |
|          | ans = struct with fields:<br>role: "user"<br>content: "What is the AI behind a voice interface?"                                                          |               |
| hy       | Generate LLM reponse                                                                                                                                      |               |
| 10<br>11 | <pre>[response, histentry] = generate(model, msghist);<br/>disp("ChatGPT replied: " + response)</pre>                                                     |               |
|          | ChatGPT replied: The AI behind a voice interface is typically based on natural language processing, voice recognition, and machine learning technologies. |               |
|          | Optionally save the structured response back into the message history                                                                                     |               |
| 12       | <pre>msghist = addResponseMessage(msghist, histentry)</pre>                                                                                               |               |
|          | <pre>msghist =     openAIMessages with properties:</pre>                                                                                                  |               |
|          | <pre>Messages: {[1x1 struct] [1x1 struct]}</pre>                                                                                                          |               |

# Your MATLAB programs can use different Generative AI models in different ways

# Connect with web services using cloud-based models like ChatGPT™

#### OpenAl

Several functions in this repository connect MATLAB<sup>®</sup> to the <u>OpenAI<sup>®</sup> Chat</u> Images API (which powers DALL·E<sup>™</sup>).

To start using the OpenAI APIs, you first need to obtain OpenAI API keys. You their APIs. You should be familiar with the limitations and risks associated wit responsible for full compliance with any terms that may apply to your use of

Some of the current LLMs supported on OpenAI are:

- gpt-4o-mini, gpt-4o-mini-2024-07-18
- o1-preview, o1-mini
- gpt-3.5-turbo, gpt-3.5-turbo-1106, gpt-3.5-turbo-0125
- gpt-4o, gpt-4o-2024-05-13 (GPT-4 Omni)
- gpt-4-turbo, gpt-4-turbo-2024-04-09 (GPT-4 Turbo with Vision)
- gpt-4, gpt-4-0613
- dall-e-2, dall-e-3

Use **local LLMs** like llama2, llama3 through a local Ollama<sup>™</sup> server

#### Ollama

This repository contains code to connect MATLAB® to an Ollama™ server, running

To use local models with Ollama, you will need to install and start an Ollama server documentation for details. You should be familiar with the limitations and risks ass shall be solely responsible for full compliance with any terms that may apply to you

Some of the LLMs currently supported out of the box on Ollama are:

- Ilama2, Ilama2-uncensored, Ilama3, codellama
- phi3
- aya
- mistral (v0.1, v0.2, v0.3)
- mixtral
- gemma, codegemma
- command-r

Establishing a connection to LLMs using Ollama

### Check the GitHub repository <u>LLMs with</u> <u>MATLAB</u> as it is frequently updated

| _                                               |                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| open ii                                         | MATLAB Online 🛃 File Exchange                                                                                                                                                                                                                                                                                                                                                                       |
| This rep<br>ChatGP<br><u>Ollama</u><br>directly | ository contains code to connect MATLAB® to the <u>OpenAI® Chat Completions API</u> (which powers<br>[ <sup>m</sup> ], OpenAI Images API (which powers DALL-E <sup>m</sup> ), <u>Azure® OpenAI Service</u> , and both local and nonlocal<br><sup>m</sup> models. This allows you to leverage the natural language processing capabilities of large language mode<br>within your MATLAB environment. |
| Requ                                            | irements                                                                                                                                                                                                                                                                                                                                                                                            |
| Math\                                           | Vorks Products (https://www.mathworks.com)                                                                                                                                                                                                                                                                                                                                                          |
| • Rec                                           | juires MATLAB release R2024a or newer.                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Sor</li> </ul>                         | ne examples require Text Analytics Toolbox™.                                                                                                                                                                                                                                                                                                                                                        |
| 3rd Pa                                          | rty Products:                                                                                                                                                                                                                                                                                                                                                                                       |
| • For                                           | OpenAl connections: An active OpenAl API subscription and API key.                                                                                                                                                                                                                                                                                                                                  |
| • For                                           | Azure OpenAI Services: An active Azure subscription with OpenAI access, deployment, and API key.                                                                                                                                                                                                                                                                                                    |
| <ul> <li>For</li> </ul>                         | Ollama: An Ollama installation.                                                                                                                                                                                                                                                                                                                                                                     |
| Setu                                            |                                                                                                                                                                                                                                                                                                                                                                                                     |

MATLAB EXPO

# Large Language Models are also increasingly used to accelerate programming tasks

| New -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Copy 🕑 Down                                                                                       |
| AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | % % ? P ×                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Allers as have   | CODE RUN                                                                                          |
| eno: whether you re checking out MATLAB for the first<br>een using it for years, I'm here to answer your question<br>oding tips.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is and provide   | % Generate the sinusoid<br>sinusoid = sin(2 * pi * f * t);                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | % Generate white Gaussian noise                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | <pre>noise = randn(size(t)); % White Gaussian noise<br/>noise power = 10^(-20/10): % -20 dB</pre> |
| Gabriele Bunkhella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | <pre>noise = sqrt(noise_power) * noise; % Scale noise</pre>                                       |
| reate two periods of a 1 KHz sinusoid combined with -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 dB white      | " Combine sinuroid and poirs                                                                      |
| aussian noise. Use a sample rate of 20 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | signal = sinusoid + noise;                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ሰም:              | % Plot the result                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | figure;                                                                                           |
| o create two periods of a 1 kHz sinusoid combined wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | th -20 dB white  | <pre>title('1 kHz Sinusoid with -20 dB White Gaussian Noise');</pre>                              |
| aussian noise using a sample rate of 20 kHz, you can<br>llowing MATLAB code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | use the          | <pre>xlabel('Time (s)'); wlabel('amplitude');</pre>                                               |
| nowing wat EAD code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | grid on;                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⊡ 48 ▷           |                                                                                                   |
| % Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 1 kHz Sinusoid with -20 dB White Gaussian Noise                                                   |
| fs = 20000; % Sample rate (20 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z)               |                                                                                                   |
| -1000, $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-1000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-10000$ , $-100000$ , $-100000$ , $-10000$ , $-10000$ , $-100000$ , $-100000$ , $-100000$ , $-100000$ , $-10000000$ , $-10000000$ , $-1000000000000000000000000000000000000$ | riods            |                                                                                                   |
| t = 0:1/fs:duration; % Time vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 1005           |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | υ.5                                                                                               |
| % Generate the sinusoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | de la                                                         |
| Enter prompt here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\triangleright$ | -0.5                                                                                              |

The <u>AI Chat Playground</u> is a great starting point to get interactive help on MATLAB programming

MATLAB is also used by engineers to develop programs and apps deployed in the cloud



MATLAB EXPO

## Using AI with MATLAB



Prototype with AI, Apps and hardware

|                | Trigger Word<br>Detector | Speech-to-text |                                |
|----------------|--------------------------|----------------|--------------------------------|
|                |                          |                | Knowledge and<br>understanding |
|                |                          | Text-to-speech |                                |
| ************** |                          |                | MATLAB EX                      |

# Getting started with an App prototype using App Designer in MATLAB doesn't take long at all





| 📣 App Designer                                |                                                                                                                                                                                                                                                                                                                                                                   |                                                    | - 🗆 ×                                                                                                               |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| DESIGNER EDITOR VIEW                          |                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 🕨 🖥 🖌 🖺 🤮 🕤 of 😗                                                                                                    |
| Save Print - Go To Bookmark - NAVIGATE        | Image: Callback Function     Property     App Input     App Arguments     Help Text       INSERT     INSERT     CODE     RUN                                                                                                                                                                                                                                      |                                                    | -                                                                                                                   |
| - App Layout                                  | myfirstliveapp.mlapp × app2.mlapp* × +                                                                                                                                                                                                                                                                                                                            | : 0                                                | omponent Browser :                                                                                                  |
|                                               | MATLAB App                                                                                                                                                                                                                                                                                                                                                        | Design View Code View S                            | Search P View: Si -                                                                                                 |
| The fully 00000000000000000000000000000000000 | <pre>10 classdef myfirstliveapp &lt; matlab.apps.AppBase 2 3 % Properties that correspond to app components 40 properties (Access = public) 11 12 % Callbacks that handle component events 130 methods (Access = private) 14</pre>                                                                                                                                |                                                    | myfirstliveapp  app.UlFigure app.AcquireSwitch app.Meter app.UlAxes  pp Callbacks Search Callbacks Search Callbacks |
|                                               | <pre>14<br/>15 % Value changed function: AcquireSwitch<br/>16 function AcquireSwitchValueChanged(app, event)<br/>17 if app.AcquireSwitch.Value == "On"<br/>18 % Audio reader initialization<br/>19 audioreader = audioDeviceReader("SampleRate",44100,"SamplesPer<br/>20 % Plot and level meter initialization<br/>21 % Plot and level meter initialization</pre> | rFrame",1024);                                     | Aame app1<br>/ersion 1.0<br>suthor Summary Secription CODE OPTIONS                                                  |
|                                               | 21 peakMeter = audioLevelMeter(SampleRate=audioreader.SampleRate,                                                                                                                                                                                                                                                                                                 | , S                                                | Single Running Instance                                                                                             |
| Code Browser                                  | 22 windowLengtn=audioreader.SampiesPerFrame);<br>23 plot(zeros(audioreader_SamplesPerFrame);                                                                                                                                                                                                                                                                      | ir ir                                              | nput Arguments                                                                                                      |
| Callbacks Functions Properties                | app.UIAxes.YLim = $0.4*[-1, 1];$                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                                                                                     |
| AccuireSwitebValueChanged                     | 25 app.UIAxes.XLim = [1, audioreader.SamplesPerFrame]; V                                                                                                                                                                                                                                                                                                          | Vhile the switch is                                |                                                                                                                     |
| AcquireSwitch valueChanged                    | 26       % Main acquisition and plotting loop       0         27       % Main acquisition and plotting loop       0         28 □       while app.AcquireSwitch.Value == "On"       0         29       % Read a frame of audio samples       0         30       x = sum(audioreader(),2);       0                                                                  | on, keep reading<br>audio frames as<br>they become |                                                                                                                     |
|                                               | 3132% Compute level and plotav32app.Meter.Value = peakMeter(x);app.UIAxes.Children.YData = x;35                                                                                                                                                                                                                                                                   | available, estimate<br>level, and plot             |                                                                                                                     |
|                                               | 36   % Flush graphics pipeline     37   drawnow limitrate     38 -   end     39   release(audioreader)                                                                                                                                                                                                                                                            |                                                    |                                                                                                                     |
| М                                             | 40 end                                                                                                                                                                                                                                                                                                                                                            | •                                                  | M                                                                                                                   |

# Your handouts include additional resources to get started with App prototypes, including with hardware I/O and AI models

![](_page_24_Figure_1.jpeg)

Create an App to Play and Visualize Audio Files

Create an app in App Designer to play and visualize audio files.

![](_page_24_Figure_4.jpeg)

Audio Input and Audio Output Read audio from a file and write audio to speakers.

![](_page_24_Figure_6.jpeg)

#### Speech Command Recognition Using Deep Learning

Use a pretrained deep learning model to perform speech command recognition on streaming audio.

![](_page_24_Figure_9.jpeg)

Wood Species Classification Using Vibration Signature on GitHub

### MATLAB **EXPO**

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

Command Window

In conclusion: using AI can mean many different things, and all can be brought together in MATLAB to create application prototypes

![](_page_26_Figure_1.jpeg)

In conclusion: using AI can mean many different things, and all can be brought together in MATLAB to create application prototypes

![](_page_27_Figure_1.jpeg)

In conclusion: using AI can mean many different things, and all can be brought together in MATLAB to create application prototypes

# **Questions?**

![](_page_28_Figure_2.jpeg)