MATLAB EXPO

November 13–14, 2024 | Online

Optimizing a Battery Electric Vehicle Thermal Management System

Lorenzo Nicoletti, MathWorks Steve Miller, MathWorks

The achievable range is still a major challenge for Battery Electric Vehicles (BEVs)

Increasing the range of BEVs requires optimizing all vehicle components following a holistic approach^{*}

2

This presentation shows how to build a holistic BEV model and achieve an optimal design

Build Holistic BEV Model Simulate & Analyze Continuing Optimize

Implementing your own BEV model is **fast and intuitive**

Build Holistic BEV Model Simulate & Analyze Continuize

The BEV model allows for a **full vehicle simulation***

Powertrain & driveline models capture vehicle behavior

Cabin loop controls the cabin's temperature

Refrigerant loop dissipates heat from cabin & powertrain

Outer coolant loop controls motor temperature

Inner coolant loop controls battery temperature

The BEV model allows for a **full vehicle simulation***

Implementing your own BEV model is **fast and intuitive**

Build Holistic BEV Model Simulate & Analyze Continuize

Use the BEV model to **understand your design**

Build Holistic BEV Model Simulate & Analyze Continuing Optimize

Initial assessment: Drive style and weather conditions **influence vehicle consumption**

Initial assessment: Drive style and weather conditions **influence thermal management performance**

The sensitivity analysis will **quantify the influence** of a set of parameters on two objectives

The objectives are:

Battery

- Condenser 1. Consumption: Total vehicle consumption during drive cycle (summer or winter)
- 2. t_{Batt} : The time (in seconds) that it takes to the battery to reach the safe temperature range (in summer or winter) τ c

Motor

In the next step, the set of parameters is chosen

Heater

1st Parameter: Cooling pipe radius impacts on pressure losses and heat exchange with the battery

2nd Parameter: Heater power influences battery temperature in winter and impacts overall consumption

3 rd Parameter: Chiller radius impacts on heat exchange and pressure losses

4 th Parameter: The lengths of evaporator and condenser impact pressure losses and heat exchange

5th Parameter: PTC power influences cabin temperature in winter and impacts overall consumption

6th Parameter: Gearbox ratio determines load points of the electric machine during the drive cycle

Once the objective and the parameters are chosen, we can set up the sensitivity analysis

[Simulink Design Optimization](https://www.mathworks.com/products/sl-design-optimization.html) automatically generates the

configurations from the parameters

We simulate 96 configurations. Each one is run twice:

– One run with the **summer scenario**

– One run with the **winter scenario**

Grbx, Ratio

The sensitivity analysis was run in parallel and took \sim 1hour*

PTC F

MATLAB EXPO

Heater Pw

Parallel computing makes the analysis x2.5 times faster

Summer Scenario: The tornado plot highlights the type of correlation between parameters and objectives

Comparison between winter and summer scenario highlights **completely different sensitivities**

Use the BEV model to **understand your design**

Build Holistic BEV Model Simulate & Analyze Continuing Optimize

Use the BEV model to **optimize your design**

Build Holistic BEV Model Simulate & Analyze Continuing Optimize

The objective is to reduce consumption while ensuring acceptable thermal management performance

• Goal: Minimize combined consumption¹

f(x) = **sSummer** × **ConsumptionSummer** + **sWinter** × **ConsumptionWinter**

- **Constraint:** Battery & cabin reach target temperature quickly
	- $-$ C1: t_{Battery} ≤ 600 sec
	- $-$ C2: t_{Cabin} ≤ 720 sec

▪ **Design Parameters:**

- D1: Plate pipe radius
- D2-D3: Heater and PTC power
- D4: Chiller radius
- D5-D6: Evaporator and condenser length
- D7: Gearbox ratio

The algorithm of choice is [surrogateopt](https://www.mathworks.com/help/gads/surrogateopt.html)²

surrogateopt finds an optimal solution that satisfies the constraints for battery and cabin

²⁹ *Optimization lasted ~1h on a laptop with these specs: 13th Gen Intel® Core[™] i7-1365U, 32GB RAM, 8 cores

The constraint for heating the battery in less than 600 sec is fulfilled at the cost of a slight increase in consumption

In summary, MathWorks enables smooth workflows for building, analyzing, and optimizing your design

MATLAB EXPO

Thank you

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

