MATLAB EXPO

November 13–14, 2024 | Online

Two Paths Towards Real-Time HIL Simulation of EV Thermal Management Systems

Dr. Yifeng Tang, MathWorks

Thermal management systems in electric vehicles ensures safety, efficiency, comfort, and cost reduction

Model-Based Design improves how you design and deliver complex engineered systems

Configuring models for real-time simulation and HIL testing can be an iterative process

Optimize simulation speed and ensure accurate results Choose solver settings and verify real-time viability

Verify HIL capability and test controller design

MATLAB EXPO

Documentation (link)

Simscape Fluids offers realistic EV thermal management system example model with closed-loop control

System architecture, components, and controls are modeled based on real vehicle information

Coolant loop in cool weather

Simscape Fluids offers realistic EV thermal management system example model with closed-loop control

System architecture, components, and controls are modeled based on real vehicle information

Coolant loop in hot weather

Simscape Fluids offers realistic EV thermal management system example model with closed-loop control

Real-time simulation can be challenging for complex thermo-fluids systems that includes refrigeration

Thermal Liquid models are straightforward to configure for real-time simulation Moist Air models may require more analysis and adjustments for real-time simulation Two-Phase Fluid models contain more complicated physics and can be difficult to configure for real-time simulations

Simulation Models

- Data-driven, reduced-order model (ROM) for complex subsystems (e.g., refrigeration)
- Leverage AI, machine learning, and statistical regression capabilities from MathWorks tools

- Optimize numerical efficiency using diagnostic tools
- Apply domain expertise; adjust model fidelity & parameters

Real-Time Target Machines

Simulation Models

- Data-driven, reduced-order model (ROM) for complex subsystems (e.g., refrigeration)
- Leverage AI, machine learning, and statistical regression capabilities from MathWorks tools

- Optimize numerical efficiency using diagnostic tools
- Apply domain expertise; adjust model fidelity & parameters

Real-Time Target Machines

Simulink & Simscape provides diagnostic tools to analyze and improve numerical performance

Solver Profiler

Identify solver performance bottlenecks

Simscape Result Explorer

Navigate and plot simulation data

VIEWER							0
	E.	□ □					
int Top Evened Collapse Hedate Class Apply	Racio Ad	hanged Show	Shine				
All All Filters Filters	Dasic Mc	Columns •	- Save				
VIEW DATA FILTER	cc	ONFIGURATION	PREFERENCES				
Type here to filter variables by name							
		Charles	Palasita	Trend	Citerat.	Unit	-
Ame b. Chiller Exercise Value		Status	ritority	rarget	Start	Unit	_
T Compressor		ă				-	 -
Ideal Angular Velocity Source		ŏ				-	 -
Mechanical Rotational Reference		ŏ				-	 _
 Positive-Displacement Compressor (2P) 		ŏ				-	 _
▶ A		O					
▶ B		0					
▶ c		0					
Phi_A		0	None	0.0	-6.11897e-36	kW	
Phi_B		0	None	0.0	6.11897e-36	kW	
▶ R		0					
mdot_A		0	None	0.0	0.0	kg/s	
mdot_B		\bigcirc	None	0.0	-0.0	kg/s	
torque		\bigcirc	None	0.0	-3.67987e-13	N*m	
Diagnostics							
All targets satisfied							
Variables at start							
7 21/21							

Simscape Variable Viewer

Check variable initialization results

Adjust component fidelity and solver settings to prepare models for real-time simulations

Use system-level component model

Slow down actuator & sensor dynamics

Chiller Expansion Valve (2)

bulb

outlet

Adjust fixed-step, fixedcost solver settings

MATLAB EXPO

Iteratively identify simulation bottlenecks and improve numerical performance and robustness

11

Real-time simulation can be achieved for EV thermal management models by optimizing numerical performance

Simulates at 4x real-time speed on desktop computer

Identify and make more adjustment to the model as needed

Test with more scenarios before proceeding to HIL testing

Simulink Real-Time[™] and Speedgoat[®] hardware offer native integration with MATLAB and Simulink for HIL

Speedgoat Performance Real-Time Target Machine

Simulation Models

- Data-driven, reduced-order model (ROM) for complex subsystems (e.g., refrigeration)
- Leverage AI, machine learning, and statistical regression capabilities from MathWorks tools

- Optimize numerical efficiency using diagnostic tools
- Apply domain expertise; adjust model fidelity & parameters

Real-Time Target Machines

Simulation Models

- Data-driven, reduced-order model (ROM) for complex subsystems (e.g., refrigeration)
- Leverage AI, machine learning, and statistical regression capabilities from MathWorks tools

- Optimize numerical efficiency using diagnostic tools
- Apply domain expertise; adjust model fidelity & parameters

Real-Time Target Machines

Data-driven models focus on the effect of complex subsystems as functions of the input conditions

Use empirical or simulation data to model the heat flow and sensor feedback signals

Multiple MathWorks tools can be used to build data-driven models to be integrated in Simulink and Simscape

Regression

Interactively train, validate, and tune regression models; generate MATLAB code for programmatic regression.

Model-Based Calibration

Apps and design tools for modeling complex nonlinear systems

Neural Network / Neural State-Space

Design and train neural networks for static and dynamic models

Also see: Reduced Order Modeler App

MATLAB EXPO

Find more information on Reduced Order Modeling

The workflow for building a data-driven refrigeration system model is established

Findings from the verification and implementation stages may require iterations of earlier steps

Speed up simulation by using a reduced-order model to capture the effects of the refrigeration system

Simulates at 10x real-time speed on desktop computer

Data-driven ROM predicts correct heat flow and sensor feedback signals

Test with more scenarios before proceeding to HIL testing

Navistar uses a data-driven approach to perform HIL simulations of the thermal management system for electric trucks

Presentation at MathWorks Automotive Conference 2024 (link)

Simulation Models

- Data-driven, reduced-order model (ROM) for complex subsystems (e.g., refrigeration)
- Leverage AI, machine learning, and statistical regression capabilities from MathWorks tools

- Optimize numerical efficiency using diagnostic tools
- Apply domain expertise; adjust model fidelity & parameters

Real-Time Target Machines

Your opportunity to explore these reliable and consistent real-time simulation approaches

Can be configured to perform real-time simulations

MathWorks Resources:

- Technical engagement project
- Hands-on workshop
- Customized training
- Consulting service

Simulation Models

- Data-driven, reduced-order model (ROM) for complex subsystems (e.g., refrigeration)
- Leverage AI, machine learning, and statistical regression capabilities from MathWorks tools

- Optimize numerical efficiency using diagnostic tools
- Apply domain expertise; adjust model fidelity & parameters

Real-Time Target Machines

MATLAB EXPO

Thank you

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

