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Models are crucial in any engineering project

Do you want to:

Design complex systems?

You need a model

_ , And tools and methods for
Analyze and validate your design? creating those models

Simulate and test your system early and often?

Optimize system performance?
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There are many different capabillities that can help you

model dynamic systems

) MathWorks Modeling Dynamic Systems .
with MATLAB and Simulink

model

Model Structures Use MATLAB® and Simulink® to support linear and nonlinear model structures, including integration of third-party models.
Linear Models Nonlinear Models Integrate Third-Party Models

TRANSFER FUNCTION STATE SPACE onlineor porfion could be “~y ' A 1-BASED MODELS FUNCTIONAL
i MOCKUP UNIT
| GAUSSIAN SUPPORT VECTOR
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Model Parameters Determine model parameters through first principles, grey box, and data-driven methods.
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PRINCIPLES WITH SIMSCAPE IN SIMULINK MODELS . ONLINE ESTIMATION MODEL ANALYSIS
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Model Manipulqﬁon Modify models through transformation, linearization, and order reduction methods.
Model Transformation Linearization Reduced Order Modeling

MODEL TYPE CONTINUOUS-DISCRETE NUMERICAL PERTURBATION BLOCK-BY-BLOCK MODEL-BASED DATA-DRIVEN
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The MathiWorks, Inc. MATLAB ond Simulink ore d trodemarks of The MathWorks, Inc. See mathworks.com narks for o list of additional trademarks. Othe t or brand nomes mo odemorks 0 pective holders

Modeling Dynamic Systems - MATLAB & Simulink (mathworks.com)

MATLAB BXPPO


https://www.mathworks.com/solutions/control-systems/modeling-dynamic-systems.html

Components could be modeled with different methods

Electric Vehicle Thermal Management .
1. Configure scenario (see code): Radistor
(i) drive cycle, (ii) cool down, (iii) cold weather T v
2. Plot power consumption in the system (see code) E)
3. Open Model Workspace to explore parameters (see definition script) l A
4. Explore simulation results using Simscape Results Explorer Condenser
5. Learn more about this example ‘
Copyright 2020-2023 The MathWorks, Inc. ~
> 4 v
T/ { Chiller i >
G| % »
Scenario -
drive cycle — Data Driven
/Al \
\ Heater Evaporator
Controls Battery PTC
: D Cabin —I
Charger Motor Inverter
Measurements — COC.)|amE LOOp
First _/ — Moist Air Loop
o — Refrigerant Loop
Principles

MATLAB EXPPO



Models can change form depending on the use case.

[ High fidelity model ]

Reduced order modeling

[ Real-time simulation with HIL testing ]
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Where do you get the information to create a model?

Physics

Data-driven modeling

First principles modeling

WHITE BOX BLACK BOX
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Where do you get the information to create a model?

Physics

\§

Data-driven modeling

First principles modeling Parameter estimation

Physics-Informed ML

WHITE BOX BLACK BOX
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With first principles modeling you build models that are
based on physical laws

— X(t)

m mix + bx + kx =0

AN \\\%\\

Text-based code Executable block diagrams Physical modeling

msd.m +

1 % Mass-Spring-Damper System Simulation A\ SI
2

3 % Parameters

4 m=1.8; % Mass (kg) ’ -

5 b = ©.5; % Damping coefficient (Ns/m)| 1 ]_

6 k = 18.8; % Spring constant (N/m) | - b ’ -

J a $ v s X
8 % Initial conditions -

9 X0 = 1.8; % Initial displacement (m) _
1@ v@ = 8.8; % Initial velocity (m/s) 1/MaSS XO - 1 m
11 initial_conditions = [x@; ve];
12
13 Time span for the simulation
14 _span = [@ 18]; % From @ to 1@ seconds

Damping g ’<

Stiffness
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There are benefits to first principles modeling

Insight and interpretability

—» X(1)

SNONNNNANNN

m —)

First principles model

mx + bx + kx =
N

0

~—
This is understandable
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Physical modeling of first principles can be even more

Interpretable than equations

Simulink Model

4’_
_>_ | >
1/Mass2 + X0=2m
™

Cn |
\ 4
|

Damping2 e
. k “le
5 Stiffness2
— Pt 1 1
— - —WP 3 > r
t ~ 1/Mass1 x0=1m

Damping1 -

Stiffness

Simscape Model

Damper1 H % Spring1
o of x0=1m
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Spring-mass-dampers are good examples to learn but
what about more complex dynamics?

Battery

§ ¢ 5 ¢ § ¢ § ¢ § ¢
Simscape

J
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Build a detailed model of a battery pack easily with
physical modeling

Build Detailed Model of Battery Pack from Cylindrical Cells R2024b

This example shows how to create and build Simscape™ system models for various battery designs and configurations based on cylindrical battery cells in Simscape™ Battery™. The buildBattery function allows you

1o automatically generate Simscape models for these Simscape Battery objects: Open in MATLAB Online

« Paralleldssembly

+ Module ( B Copy Command

ModuleAssembly

* Pack If you set the ModelResolution property of the parallel assembly to "Detailed”, the ParallelAssembly object instantiates a number of cell model blocks equal to the value of the

This function creates a library in your working folder that contains a system model block of a battery pack Usethiss ~ NumParallelCells property and ts them i in parallel in Si
apen-circuit voltage, are defined after the model creation and are therefore not covered by the Battery Pack Builder cf
MaskParameters argument of the buildBattery function.

During the first half of this example, you first define the key properties of a cylindrical battery cell and block model. ¥¢
also called a *sub-module’, a “super<ell’,a ‘P-sel’, of just a ‘cell". You later employ this parallel assembly to define a|
+
-

a fundamental repeating unit. Throughout the workflow, you visualize the geometry and the relative positioning of the

i + +
In the second half of the example, you modify the modeling methodology and the model resolution of the Module, Mo
stacking of any battery object along the sequence either along the X or ¥ axis. These axis mirror the Coordinate Syste = — —-— LN
Create and Visualize Battery Objects in MATLAB _
To create a battery pack, you must first design and create the foundational elements of the battery pack, i | Cell_1 1 | Cell_2 ' Cell 3 ' Cell
This figure shows the overall process to create a battery pack object in a bottom-up approach: NumParallelCells

The cylindricalPackExample library contains the Simscape models of your ModuleAssembly and Pack objects.

Change the model resolution of the previous ParallelAssemb!
SimulationStrategyVisible specified as "on".

detailedParallelAssembly = lumpedParallelAssembly
detailedParallelAssembly.ModelResolution = "Detai
f = figure("Color”,"white");

detailedParallelAssemblyChart = batteryChart(f,de

Parallel
® Assembly

Energy (kWh)

® Cell

0.06
0.04
0.02

Number of cells o

11 Build Detailed Model of Battery Pack from Cylindrical Cells - MATLAB & Simulink (mathworks.com) MATLAB {PO



https://www.mathworks.com/help/simscape-battery/ug/build-battery-pack-from-cylindrical-cells.html

First principles modeling Is used by our
customers for a variety of applications

_ 5 o

Link to User Story

e

Imae credit: SEGULA Technolog|

Link to User Story

12

Virtual Design and Testing of an Autonomous Rescue
Drone Speeds Up Product Development

Simscape™ was used for detailed models of the subsystems, including the
electric powertrain with battery, intermediate circuit, inverter, and engine.

This Clean Power Source Is Helping Fuel the Future of Transportation

Starting with a Simscape model shaves four to
six weeks off of the initial development time.

-Dirk Rensink
Technical lead for fuel cell simulation, SEGULA Technologies
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https://www.mathworks.com/company/mathworks-stories/virtual-design-and-testing-of-an-autonomous-rescue-drone-speeds-up-product-development.html
https://www.mathworks.com/company/mathworks-stories/hydrogen-fuel-cell-development-brings-clean-power-to-transportation.html

Where do you get the information to create a model?

Physics

\§

Data-driven modeling

First principles modeling Parameter estimation

Physics-Informed ML

WHITE BOX BLACK BOX
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With parameter estimation you identify physically meaningful
parameters using system equations and measured data

experimental data

14

Parameter

Estimation

OpenCircuitVoltage (L /]

R

A — A
- 1
1 WAV
"o

fcRie)
o)

<]
[ D
- "

P SelfDischargeResistor
(
[ 4 «|
A

estimated parameters

Battery Single Particle

Settings Description

Block Parameters: Battery Single Particle

*

Auto Apply @

> Geometry
v Eectrodes Properties

» Anode open-circuit potential

» Cathode open-circuit potential

» MNormalized stoichiometry breakpoints
> Anode maximum ion concentration

Anode maximum stoichiometry

» Volume fraction of cathode active mater...

g/ Volume fraction of anode active material | 0.58

0374

~N

_J-

'Q Battery Single
6 Particle Block
J=

[484; 335: .253; 20: 2: 181:165: 1. |V v
[3.81:3.608:35123.478:3459:34533... |V v
linspace(0.025, 0975, 39) 5 double>
30555 mol/m* 3 v
0.831

J
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Parameter estimation with Simulink Design Optimization

Specify Experiment

T OFTTCT TSTIVIAT

VoltageMatching X

MODELIN FORMAT

VoltageMatchin —
. terminal voltage | E% *
38 T T T T 1 Get B Linearization Model Contral System Parameter Response  Robot Opersting
Add-Ons ~ | App = Manager Lingarizer Designar Estimator Optimizer System (ROS)
ENVIRONMENT FILE APPS Y
37 g sdoSPMBattery = ®
sdoSPMB: = PR . — .
2 € osPMBarery 4| Edit Signal Matching: SignalMatching — O X
36 &3 . Outputs
[& Select Outputs - o x ‘ g I
= S I n a Output Signals Configure Measured Data
Click Simulink signals or Simscape blocks in the mode! to add to the table, =
Outputs A = .
- ‘ Select Signals ‘ | Update from workspace | >< | (®) Select time and data vectors from MATLAB workspace
[+ | sdoSPMBattery/Probe:1 (terminal voltage (V) I t
a (_) Specify time and data as timetable, timeseries, or in array notation
Output Signal Text Entered
sdoSPMBattery/Probe:1 (terminal voltage (V)) |[VoltageMeasTime(:), VoltageMeasData(: Time ‘VoltageMeasTime ‘ v

Data ‘VoltageMeasData ‘ v |
Help oK | [cancel

measured test data

Data updated (2:23:17 pm)

3.1
-E|
» |3 »
3 110%
» Initial States
(Help| (Plot & Simulate | [Plot| [Close |

MATLAB BXPPO
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Parameter estimation with Simulink Design Optimization

Specify Experiment

Select Parameters

[4 Edit: Estimated Parameters
Parameters Tuned for All Experiments

Select Parameters

aameter Initial Value

Configure: CDC

\_

Estimate
2635457085434360-19 | Yes 7| Estimate
CPR 5.89191365022431e-08 |Yes
ADC 3e-15 No Initial Value | 2.635457...
APR 5e-06 No
Minimum 2.54e-19
Maximum 1.3664e-18
Scale 5.421010...

<

Parameters and Initial States Tuned per Experiment

Experiment | VoltageMatching v
Select experiment initial states for estimation

There are no initial states defined for this experiment
Select experiment parameters for estimation

There are no parameters defined for this experiment.

Help

PARAMETER ESTIMATION VALIDATION EXPERIMENT PLOT
2 B =8 B @ >
@ ’ﬁ . E ‘L@ Cost Function: Sum Squared Error ~
Open Save New Select Select Sensitivity | Add Plotl] Plot Model 48 More Options ~ Estimate
\ Session ¥ Session ¥ Experiment Experiments | Parameters Analysis v v Response v
FILE EXPERIMENTS PARAMETERS PLOTS OPTIONS ESTIMATE -
>< ~ Parameters Experiment plot: VoitageMatching X
cbC = VoltageMatching
CPR 38 terminal voltage (V)
ADC e [ Measured
Simulated
4 APR - 3.7
2 Voltas i 3.6
geMatching
/ i 3.5
Q
53'4 \ ~ (= |
~ Results 5 - s = 1 NN =
£33 p .
<
3.2 ‘
341 |
~ Preview ‘
3 }
29! : L L L " 1 A L L |
0 0.2 0.4 0.6 08 1 1.2 14 1.6 1.8 2
Time (seconds) x104
Update Model | ' Close
N

B XIPO
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Parameter estimation with Simulink Design Optimization

Specify Experiment

Select Parameters

Estimate Parameters

Estimation Options

General

Optimization

Parallel

Optimization Method

Method

Gradient descent

Optimizati

Paramete

Nonlinear least squares
Gradient descent

Pattern search

Algorithm [\nterior—Point

Function tolerance | 0.001

3 Surrogate optimization
Maximum

Simplex search
Use robust cost (]

Display level

lteration ¥ ]

Restarts

Parameter estimation of a single-particle battery model with electrolyte dynamics (SPMe) - MATLAB & Simulink (mathworks.com)

-
Open Save
Session > Session ¥
FILE

- Parameters

4 Parameter Estimator

B
New Select

Experiment Experiments
EXPERIMENTS

cDc
CPR
ADC
APR

- Experiments

VoltageMatching

- Results

EstimatedParams

B B

Select Sensitivity
Parameters Analysis ~
PARAMETERS

Z @

Add Plot  Plot Model {E} Mare Options +
- Response

PLOTS

Experiment plot: VoltageMatching X

3.8

VoltageMatching
terminal voltage (V)

OPTIONS

3.7

w
@

o
o

Amplitude

w
'S
N

33

Measured
Simulated

3.2
0

0.5 1 1.5
Time (seconds)

x10*

Cost Function: Sum Squared Ermor D

Estimate
-

ESTIMATE
EstimatedParams X

o 108 EstimatedParams

|

Value

—+—CDC
A—CPR

0 2 4 6 8 10 12

Iteration

MATLAB BXPPO


https://www.mathworks.com/help/releases/R2024b/sldo/ug/perform-grouped-estimation-of-model-parameters-for-single-particle-battery-model.html

Parameter estimation with Model-Based Calibration

Toolbox

4] Feature Fill Wizard

Select lookup tables to fill

parameters and tables for optimization

Data folder:

Lookup Tables  Calibration Scalars

Select the lookup tables and calibration scalars that you want to fil. Set fill options. The imported calibration file should contain only

- ] *

Import calizration file

Table Name Clear Mask |Extrapolate Table Bounds Row Gradient Bo... | Column Gradient ...
[ c1 -1 ] [10, Inf] [-Inf, Inf]
[ c2 [ ] [10, Inf] [-Inf, Inf]
[ c3 [ ] [10, Inf] [-Inf, Inf]
L] em [ [ 1e-5, Inf] [-Inf, Inf]
] R0 [ [ 1e-5, Inf] [-Inf, Inf]
[ R = [1e-5, Inf] [-inf, Inf]
[A Rz [ [ 1e-5, Inf] [-Inf, Inf]
[ r3 [ O [ 1e-5, Inf] [-Inf, Inf]
Calibration Choose folder
folder:
< Back Next = Finish

18 Characterize Battery Block Parameters in CAGE - MATLAB & Simulink (mathworks.com)

Estimate battery model lookup tables from experimental data

(4 Fill Progress

004 T T T T T

tteration 60: RMSE = 0.00125464, Change in table values = 0.00300255

Optimization: Iteration 60, RMSE=0.1

Residuals
o

i L L L L L

a 10 20 30
leration

Lookup Table Display:

Cancel

Lookup Table Preview Calibration Scalars Validation

42 — T

V, Reference:V v ime (RMSE=0.0012538)
T T T

T

<Selection>
w
o
T

28

26

22 L I L

T T

ARnnn s

Reference: \4 ~
Validation data source

1 - PulseData csv. ~

X-axis factor: | time

v -axis factor: «Selections

x10°

Plot types

(® Comparison piot
() Scatter plot matrix
(O Timeseries plots
() Histogram

Export To SDI

RMSE: 0.00125464 (Maximum 0.0378188)
Percentage RMSE: 0.0% (Maximum 1.7%)
Re2: 1.00

Lookup table method: linear

MATLAB BXPPO
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Parameter estimation is used by our customers for a
variety of applications

Krones Develops Package-Handling Robot Digital Twin

Simulink Design Optimization™ was used to enhance model accuracy by
fitting parameters to experimental data from the tripod robot tests.

VE Commercial Vehicles Establishes Ride Comfort
Characteristics of Tractor-Semitrailers

In a tractor-trailer, we get many components from suppliers and
sometimes the parameter what we need may or may not occur during
our testing. Simulink Design Optimization™ is a very handy tool when it

comes to identify some of these unknown parameters.
= vE commERGIAL VENICLE = | G ecnen - | | RS -Sarnab Debnath
VE Commercial vehicles Ltd m

MATLAB BXPPO

Damper properties of Main Suspension

Link to User Story



https://www.mathworks.com/company/user_stories/krones-develops-package-handling-robot-digital-twin.html
https://www.mathworks.com/company/user_stories/case-studies/ve-commercial-vehicles-establishes-ride-comfort-characteristics-of-tractor-semitrailers.html

Where do you get the information to create a model?

Physics

\§

Data-driven modeling

First principles modeling Parameter estimation

Physics-Informed ML

WHITE BOX BLACK BOX
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With data-driven modeling you build models that are
based on measured or generated data

Gather Experimental Data

data from hardware data from full-order models
(measured data) (generated data)
Output

21 MATLAB BXPPO



With data-driven modeling you build models that are
based on measured or generated data

Gather Experimental Data Estimate Model from Data

Input

Nonlinear Models

/= | - NLARX
: HAMMERSTEIN-WIENER
data from hardware data from full-order models -
(generated data)

(measured data)

I I NEURAL STATE SPACE

l
Output

22 MATLAB BXPPO




With data-driven modeling you build models that are
based on measured or generated data

Gather Experimental Data Estimate Model from Data Vel MOde:DV;/tI;h el it

Input Input

| TRANSFER FUNCTION Sra et |
m WE
M Nonlinear Models A M

Al ,
& NLARX :
’ HAMMERSTEIN-WIENER o
GD"C)" original model estimated model
data from hardware data from full-order models

(measured data) (generated data) l < > l
compare

I I NEURAL STATE SPACE

| : Real Output Estimated
Output @) @ Output

23 MATLAB BXPPO




There are benefits to data-driven modeling

Identify models when first-principles
models are difficult to derive

-~

S_AC

Reduce complexity by capturing only

the dynamics of interest

24

o

A B A B8 \
T2 >T4 > W S_blend B8 C
Oon/Off G u Blend Door
M2 > MA Fr>
C

Refrigerant Evaporator

A

S_flap } 8

B

C

Recirculation Flap  gnvironment

=

Out

Cabin /

Fidelity

Reduced Order Modeling (ROM)

e,

Full-order model
~
LN
N
« Reduced order model
o

Speed

ROM
Eigg ;; —
MATLAB EXPO



Data-Driven Modeling in MATLAB and Simulink

System Ildentification App

(data from hardware)

E Systern [dentification - dryer2

File Options

Window Help

=8 o =

Reduced Order Modeler App

(data from full-order model)

Import data -

4

MM

data_est data_val

Diata Views
[T Time plot
|:| Data spectra

|:| Freguency function

Operations

Import models -

4

<— Preprocess -

imp

spad

I

angs ndsd

T
.-f\\‘/n\\

data_est
Working Data

i

Estimate —= -

Transfer Function Models...
State Space Models. ..
Process Models...

Polynomial Models...

| Mode! output

]

Nonlinear ARX Models...

Hammerstein-Wisner Models. ..

lgata val
dation Data

Spectral Models. ..
Correlation Models...
Refine Existing Models. ..
Quick Start

Regression
, Tree

Gaussian
“Process
A\

Support Vector®

Machil
o

System Identification Toolbox Examples - MATLAB & Simulink (mathworks.com)

4 Reduced Order Modeler-Full_model

REDUCED ORDER MODEL

@ %
New Open  Save Edit New

Session Session Session
FILE
- Inputs/Outputs
* ROM Input
Full_model/High-fidelity Model/First Order Hold:1

INPUTS/OUTPUTS

Full_model/High-fidelity Model/First Order Hold1

Full_model/High-fidelity Model/First Order Hold2:
~ ROM Output

Full_model/High-fidelity Model/MATLAB Function
= Simulation Input

Full_model/Ambient Temperature: 1(Ambient)

Full_model/Cooling Temperature:1(Cooling)

Full_model/Pressure: 1(Pressure)

~ Experiments

Name # Sims. Results
[v! |Exper1mem 1|Data
v Experiment_1 1|Data

Inputs/Qutputs | Experiment

Simulation
Options

Run

g8 ® [ 4

Open

Simulations Results

COLLECT DATA

Overview x

Ambient

Pressur

Experiment %

& -]
LSTM Nonlinear
Network ARX
CREATE

1500
Ambient

200060

100

150 200 250
Cooling

3}

Neural

State Space

MODEL

45

5
Pressure

55

x10%

[

Export

EXPORT
Configure Experiment

Signal Injection Mode | Replace v

Signal Type Random pulses ¥
Pulse width 100
Number of pulses 2003
Pulse Amplitude Ranges
Signal Min Max
1 Amblent 800 2000
2 |Cooling | 50 250
Pressure 450000 550000
Plot Signals

Session opened, Full_model_ROMSession_final. mat |

H

Reduced Oder Model of a Jet EngineTurbine Blade - MATLAB & Simulink

(mathworks.com)

MATLAB BXPPO



https://www.mathworks.com/help/ident/examples.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/0cee96ac-b9e3-4632-9809-a7fd7d78d2b0/2c26df20-0ce2-4331-8ce3-8b2b50e9b7e1/previews/doc/examples/html/turbineblade_example.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/0cee96ac-b9e3-4632-9809-a7fd7d78d2b0/2c26df20-0ce2-4331-8ce3-8b2b50e9b7e1/previews/doc/examples/html/turbineblade_example.html

Al-based Reduced Order Modeling Is one of the many

ROM Techniques that MathWorks offers

-

Al-Based ROM

Non-Al-Based
ROM

c&d Order Modeler— -

Exermens

Al-Based Data-Driven

|

‘@ @ﬁﬁgﬁ\

’i mi+hbx+kx=0

Parameter Estimation

Physics-Based

26  Reduced Order Modeling - MATLAB & Simulink (mathworks.com)

Linearization

Reduced Order Flexible Solid

Model-Based

MATLAB BXPPO


https://www.mathworks.com/discovery/reduced-order-modeling.html

Data-Driven Modeling in MATLAB and Simulink

System Ildentification App

(data from hardware)

E Systern [dentification - dryer2

File Options

Window Help

=8 o =

Reduced Order Modeler App

(data from full-order model)

Import data -

4

MM

data_est data_val

Diata Views
[T Time plot
|:| Data spectra

|:| Freguency function

Operations

Import models -

4

<— Preprocess -

imp

spad

I

angs ndsd

T
.-f\\‘/n\\

data_est
Working Data

i

Estimate —= -

Transfer Function Models...
State Space Models. ..
Process Models...

Polynomial Models...

| Mode! output

]

Nonlinear ARX Models...

Hammerstein-Wisner Models. ..

lgata val
dation Data

Spectral Models. ..
Correlation Models...
Refine Existing Models. ..
Quick Start

Regression
, Tree

Gaussian
“Process
A\

Support Vector®

Machil
o

System Identification Toolbox Examples - MATLAB & Simulink (mathworks.com)

4 Reduced Order Modeler-Full_model

REDUCED ORDER MODEL

@ %
New Open  Save Edit New

Session Session Session
FILE
- Inputs/Outputs
* ROM Input
Full_model/High-fidelity Model/First Order Hold:1

INPUTS/OUTPUTS

Full_model/High-fidelity Model/First Order Hold1

Full_model/High-fidelity Model/First Order Hold2:
~ ROM Output

Full_model/High-fidelity Model/MATLAB Function
= Simulation Input

Full_model/Ambient Temperature: 1(Ambient)

Full_model/Cooling Temperature:1(Cooling)

Full_model/Pressure: 1(Pressure)

~ Experiments

Name # Sims. Results
[v! |Exper1mem 1|Data
v Experiment_1 1|Data

Inputs/Qutputs | Experiment

Simulation
Options

Run

g8 ® [ 4

Open

Simulations Results

COLLECT DATA

Overview x

Ambient

Pressur

Experiment %

& -]
LSTM Nonlinear
Network ARX
CREATE

1500
Ambient

200060

100

150 200 250
Cooling

3}

Neural

State Space

MODEL

45

5
Pressure

55

x10%

[

Export

EXPORT
Configure Experiment

Signal Injection Mode | Replace v

Signal Type Random pulses ¥
Pulse width 100
Number of pulses 2003
Pulse Amplitude Ranges
Signal Min Max
1 Amblent 800 2000
2 |Cooling | 50 250
Pressure 450000 550000
Plot Signals

Session opened, Full_model_ROMSession_final. mat |

H

Reduced Oder Model of a Jet EngineTurbine Blade - MATLAB & Simulink

(mathworks.com)
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https://www.mathworks.com/help/ident/examples.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/0cee96ac-b9e3-4632-9809-a7fd7d78d2b0/2c26df20-0ce2-4331-8ce3-8b2b50e9b7e1/previews/doc/examples/html/turbineblade_example.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/0cee96ac-b9e3-4632-9809-a7fd7d78d2b0/2c26df20-0ce2-4331-8ce3-8b2b50e9b7e1/previews/doc/examples/html/turbineblade_example.html

Data-Driven modeling Is used by our customers for a

variety of applications

Link to User Story

Methodology

- Generate code of the process (Script version)

' v « Newral Netwark Architecture definton SElEs TR R sliitettng)
v » Defne initial values of hy perparameters”
w
e v « Train model for one resporse”
\ LY Scope of aptimzation

v « Automate process for traning multiple responses

Link to User Story
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Ather Energy Develops Electric Two-Wheeled Scooter and
Charging Stations Using Model-Based Design

System Identification Toolbox™ was used to create a model
of battery cells, capturing their electrical and thermal
characteristics using input-output data.

Cummins Uses Al-Based Reduced Order Modeling to Predict
Engine Performance and Emissions

Cummins used LSTM-based neural networks to reduce
engine cycle simulation run times to one-eighth of real time.
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https://www.mathworks.com/company/user_stories/cummins-uses-ai-to-enhance-engine-performance-models.html
https://www.mathworks.com/company/user_stories/ather-energy-develops-electric-two-wheeled-scooter-and-charging-stations-using-model-based-design.html

Where do you get the information to create a model?

Physics

\§

Data-driven modeling

First principles modeling Parameter estimation

Physics-Informed ML

WHITE BOX BLACK BOX
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Physics-Informed Machine Learning techniques let you

Incorporate your understanding of physics to enhance machine
learning methods

Al-based nonlinear functions

Nonlinear ARX T s -
Output Function 4 Neural Support Vector .
- networks Machiner | =}
. . e T o
mi+cx+kx—F=0 , m e & N " +/+L
. o \!7“\\7\%7& "
o= g8 -

h 4

\
|
|

. i |
Regressors Monlinear L . I
2 uit)ut-1Ly(-1), ... Function Regression Gaussian .

d-x I
|
|
|

1= ¥ 8 & - Trge. ““Process :

/ dt? d?x  dx ! . |
M=+ —+ k= F Function :

dat dt :

e . /

Hammerstein-Wiener
loss, lossg

\

loss = loss, +|loss, / / =‘ [ _ Dead Zone Saturation
t Input t i t Output t : | . _
uft) Nm”?eadw w(t) | Linear | x(t) y(t)

. : : |
| system Nanllrr:eanty—b- .

Physics-Informed Neural Networks (PINNs)

\ ] -
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Where do you get the information to create a model?

Physics

\ p
i Physics Knowledge |

J AN J

a cor =V koT

AN

00000000000000000000000000000000

First principles modeling Parameter estimation Data-driven modeling

Physics-Informed ML

WHITE BOX BLACK BOX

31 MATLAB BXPPO



Models come together for a purpose

Electric Vehicle Thermal Management

1. Configure scenario (see code): Radiator

(i) drive cycle, (ii) cool down, (iii) cold weather Y v
2. Plot power consumption in the system (see code) b
3. Open Model Workspace to explore parameters (see definition script) A
4. Explore simulation results using Simscape Results Explorer
5. Learn more about this example

Condenser

| @ [ W Desktop Simulation
f(x)=0 Dvﬂ @ |

2)

Copyright 2020-2023 The MathWorks, Inc.

Scenario Hardware-in-the-Loop
drive cycle Data Driven T I
DCDC \ esting

1 Al
Heater Evaporator
\

Controls Battery @ PTC
& [:] I

>

System-Level Analysis

Cabin p———

Control Design

Charger Motor Inverter

—— Coolant Loop
Measurements
/ — Moist Air Loop

First T — Refrigerant Loo : P :
/7 Principles \ g P Design Optimization

3'd party full- Deep learning
order models models from

(FEA/CFD/CAE) PyTorch/TensorFlow
32 MATLAB BDXJPO
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There are advantages across the modeling spectrum

Physics

Deep Learning Physics Knowledge

k
[—
L

e 0N \
ne\eXe)
s

s
F‘h.
EE
n
a
2
3

Physics-Informed
Neural Networks

First principles modeling

Parameter estimation

Data-driven modeling

Physics-Informed ML

WHITE BOX BLACK BOX
Advantages Advantages
= Have clear (explainable) physical meaning = ldentify models when first-principles
= Do not require data engineering models are difficult to derive

= Reduce complexity
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Check out this poster for a larger list of
modeling capabilities

Modeling Dynamic Systems
with MATLAB and Simulink

Model Structures Use MATLAB® and Simulink® to support linear and nonlinear model structures, including integration of third-party models. Explore capabilities:
Linear Models Nonlinear Models Integrate Third-Party Models

ld be
HENER G SLLEETL coresmed win A\ AI-BASED MODELS FUNCTIONAL
PR AP MOCKUP UNIT

6AUSSIAN SUPPORT VECTOR
HAMMERSTEIN-WIENER | Ao Fldiila _G_)
LINEAR PARAMETER  TIME SERIES (ARX, ARMA) ;

VARYING PYTHON
IMPORTERS

NLARX 5
-. REGRESSION TREE NEURAL NETWORK Model Structures

FREQUENCY RESPONSE DATA S-FUNCTIONS
- D . ,
—G—) ./ } Da, Linear Models Transfer Function - What Is a Transfer Function? - Discovery

State Space

Model Structures Model Parameters Model Manipulation

TRANSFER FUNCTION STATE SPACE

Model Parameters Determine model parameters through first principles, grey box, and data-driven methods. LINEAR PARAMETER

VARYING X ! What Is State Space? - Documentation

- Uncertain State-Space Model - Function

TIME SERIES (ARX, ARMA)
. Sparse First-Order State-Space Model - Function
/ fit F i a F unctio
FREQUENCY RESPONSE DATA ,,* i
———~~|—— Sparse Second-Order State-Space Model - Function
Jo Linear Parameter Varying - LPV and LTV Models - Documentation

DATA PREPARATION OFFLINE ESTIMATION ) . )
_tgj'_ Time Series (ARX, ARMA) - Time Series Analysis - Documentation

ZPK - Zero-Pole-Gain Model - Function

MODELING BASED ON PHYSICAL LAWS MODELING BASED ON SYSTEM DATA
WHITE BOX BOX BLACK BOX

FIRST N etoAL MODEL NG BpRaRpRApRALAE P HEE SYSTEM IDENTIFICATION (TRADITIONAL AND AI-BASED)
PRINCIPLES WITH SIMSCAPE IN SIMULINK MODELS ONLINE ESTIMATION MODEL ANALYSIS

Model Munipulaﬁon Modify models through transformation, linearization, and order reduction methods. Frequency Response Data - Frequency Response Data Models - Documentation

Model Transformation Linearization Reduced Order Modeling

MODEL TYPE CONTINUOUS-DISCRETE NUMERICAL PERTURBATION BLOCK-BY-BLOCK MODEL-BASED DATA-DRIVEN

f i BALANCED POLE-ZERO Use
/ TRUNCATION . SIMPLIFICATION ¥

STATE-COORDINATE MODAL DECOMPOSITION FREQUENCY RESPONSE ESTIMATION

o Ao LB

Nonlinear Models ODEs

Getting Started with Simulink for Controls (11:30) - Video
HAMMERSTEIN-WIENER

Thermal Model of a House in Simulink - Example

ODEs with Symbolic Math - Documentation

NEURAL STATE SPACE Solving ODEs in MATLAB - Video Series

The MathWorks, Inc. MATLAB and Simulink o ademarks of The MothWorks, Inc. See mothworks.com/trodemarks for a list of addifional trodemarks. trademarks or g ve holders.

Neural State Space
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