MATLAB **EXPO**

November 13–14, 2024 | Online

Modeling Dynamic Systems with MATLAB and Simulink

Kishen Mahadevan, MathWorks

Brian Douglas, MathWorks

Models are crucial in any engineering project

Do you want to:

Design complex systems?

Simulate and test your system early and often?

Analyze and validate your design?

Optimize system performance?

You need a model

And tools and methods for creating those models

There are many different capabilities that can help you model dynamic systems

Modeling Dynamic Systems - MATLAB & Simulink (mathworks.com)

Components could be modeled with different methods

Models can change form depending on the use case.

Where do you get the information to create a model?

Where do you get the information to create a model?

With first principles modeling you build models that are based on physical laws

$$m\ddot{x} + b\dot{x} + kx = 0$$

Text-based code

Executable block diagrams

Physical modeling

There are benefits to first principles modeling

Insight and interpretability

Physical modeling of first principles can be even more interpretable than equations

Simscape Model

Spring-mass-dampers are good examples to learn but what about more complex dynamics?

Build a detailed model of a battery pack easily with physical modeling

Cell 3

NumParallelCells property and connects them electrically in parallel in Simscape.

Cell 2

R2024b

Open in MATLAB Online

Copy Command

NumParallelCells

If you set the ModelResolution property of the parallel assembly to "Detailed". the ParallelAssembly object instantiates a number of cell model blocks equal to the value of the

Build Detailed Model of Battery Pack from Cylindrical Cells

This example shows how to create and build Simscape" system models for various battery designs and configurations based on cylindrical battery cells in Simscape" Battery". The buildBattery function allows you to automatically generate Simscape models for these Simscape Battery objects:

ParallelAssembl

• Module

ModuleAssembly

Pack

This function creates a library in your working folder that contains a system model block of a battery pack. Use this s open-circuit voltage, are defined after the model creation and are therefore not covered by the Battery Pack Builder c MaskParameters argument of the buildBattery function.

During the first half of this example, you first define the key properties of a cylindrical battery cell and block model. Y also called a "sub-module", a "super-cell", a "P-set", or just a "cell". You later employ this parallel assembly to define a a fundamental repeating unit. Throughout the workflow, you visualize the geometry and the relative positioning of the

In the second half of the example, you modify the modeling methodology and the model resolution of the Module, Mo stacking of any battery object along the sequence either along the X or Y axis. These axis mirror the Coordinate Syst

Create and Visualize Battery Objects in MATLAB

To create a battery pack you must first design and create the foundational elements of the battery pack

This figure shows the overall process to create a battery pack object in a bottom-up approach

First principles modeling is used by our customers for a variety of applications

"

Link to User Story

Virtual Design and Testing of an Autonomous Rescue Drone Speeds Up Product Development

Simscape[™] was used for detailed models of the subsystems, including the electric powertrain with battery, intermediate circuit, inverter, and engine.

Image credit: SEGULA Technologies

Link to User Story

This Clean Power Source Is Helping Fuel the Future of Transportation

Starting with a Simscape model shaves four to six weeks off of the initial development time.

Dirk Rensink-Technical lead for fuel cell simulation, SEGULA Technologies

Where do you get the information to create a model?

With parameter estimation you identify physically meaningful parameters using system equations and measured data

Parameter estimation with Simulink Design Optimization

• Specify Experiment

Parameter estimation with Simulink Design Optimization

Specify Experiment

Select Parameters

meters Tu	ned for All Experiments						
elect Param	eters						
arameter	Initial Value	Estimate	Configure: Cl	DC			
DC	2.63545798543486e-19	Yes	Estimate		\mathbf{X}		
PR	5.89191365922431e-08	Yes			\square		
ADC	3e-15	No	Initial Value	2.635457			
APR	5e-06	No					
			Minimum	2.54e-19			
			Maximum	1.3664e-18	-		
			Scale	5 421010			
meters and	d Initial States Tuned p	er Experiment					
periment	VoltageMatching 🔻						
ect experim	ent initial states for estin	nation					
here are no	initial states defined for	this evneriment					
ect experim	ent parameters for estim	ation					
	parameters defined for t	this experiment.					
here are no							

Parameter estimation with Simulink Design Optimization

• Specify Experiment

Select Parameters

Estimate Parameters

stimation O	ptions		.
General	Optimization	Parallel	
Optimiza	tion Method		
Method	Gradient desce	ent 🔻	Algorithm Interior-Point
o	Nonlinear leas	t squares	
Optimiza	Gradient desce	ent	
Paramet	e Pattern search	1	Function tolerance 0.001
Maximur	Surrogate opti	mization	
Use robu	ust cost		
Display I	evel	eration 🔻	
Restarts	0		
lelp			OK) Can

17 Parameter estimation of a single-particle battery model with electrolyte dynamics (SPMe) - MATLAB & Simulink (mathworks.com)

Parameter estimation with Model-Based Calibration Toolbox

)ata folder:				Import calibration file				
okup Tables	Calibration Scala	ars						
Table Name	Clear Mask	Extrapolate	Table Bounds	Row Gradient Bo	Column Gradient			
C1			[10, Inf	[_Inf, Inf]				
C2			[10, Inf	[_Inf, Inf]				
C3			[10, Inf	[_Inf, Inf]				
Em			[1e-5, Inf	[_Inf, Inf]				
R0			[1e-5, Inf	[_Inf, Inf]				
R1			[1e-5, Inf	[_Inf, Inf]				
R2			[1e-5, Inf	[_lnf, lnf]				
R3			[1e-5, Inf	[_lnf, lnf]				

Estimate battery model lookup tables from experimental data

18 Characterize Battery Block Parameters in CAGE - MATLAB & Simulink (mathworks.com)

Parameter estimation is used by our customers for a variety of applications

"

Link to User Story

Link to User Story

Krones Develops Package-Handling Robot Digital Twin

Simulink Design Optimization[™] was used to enhance model accuracy by fitting parameters to experimental data from the tripod robot tests.

VE Commercial Vehicles Establishes Ride Comfort Characteristics of Tractor-Semitrailers

In a tractor-trailer, we get many components from suppliers and sometimes the parameter what we need may or may not occur during our testing. Simulink Design Optimization[™] is a very handy tool when it comes to identify some of these unknown parameters.

-Sarnab Debnath VE Commercial vehicles Ltd

Where do you get the information to create a model?

With data-driven modeling you build models that are based on measured or generated data

With data-driven modeling you build models that are based on measured or generated data

With data-driven modeling you build models that are based on measured or generated data

There are benefits to data-driven modeling

Identify models when first-principles models are difficult to derive

Reduce complexity by capturing only the dynamics of interest

Data-Driven Modeling in MATLAB and Simulink

System Identification App (data from hardware)

System Identification Toolbox Examples - MATLAB & Simulink (mathworks.com)

Reduced Order Modeler App (data from full-order model)

Reduced Oder Model of a Jet EngineTurbine Blade - MATLAB & Simulink (mathworks.com) MATLAB EXPO Al-based Reduced Order Modeling is one of the many ROM Techniques that MathWorks offers

Data-Driven Modeling in MATLAB and Simulink

System Identification App (data from hardware)

System Identification Toolbox Examples - MATLAB & Simulink (mathworks.com)

Reduced Order Modeler App (data from full-order model)

Reduced Oder Model of a Jet EngineTurbine Blade - MATLAB & Simulink (mathworks.com) MATLAB EXPO

Data-Driven modeling is used by our customers for a variety of applications

Link to User Story

Ather Energy Develops Electric Two-Wheeled Scooter and Charging Stations Using Model-Based Design

System Identification Toolbox[™] was used to create a model of battery cells, capturing their electrical and thermal characteristics using input-output data.

Define initial values of hyperparameters*	
	,
Train model for one response*	
 Optimize hyper parameters (Scope of optimization) 	
- Generate code of the process (Script version))
Automate process for training multiple responses)
	Train model for the response Optimize hyper parameters (Scope of optimization) Generate code of the process (Script version) Automate process for training multiple responses

Link to User Story

Cummins Uses AI-Based Reduced Order Modeling to Predict Engine Performance and Emissions

Cummins used LSTM-based neural networks to reduce engine cycle simulation run times to one-eighth of real time.

Where do you get the information to create a model?

Physics-Informed Machine Learning techniques let you incorporate your understanding of physics to enhance machine learning methods

Where do you get the information to create a model?

Models come together for a purpose

There are advantages across the modeling spectrum

Advantages

- Have clear (explainable) physical meaning
- Do not require data engineering

Advantages

- Identify models when first-principles models are difficult to derive
 - Reduce complexity

Check out this poster for a larger list of modeling capabilities

Explore capabilities:

Model Structures

Model Parameters

Model Manipulation

Model Structures

Transfer Function - What Is a Transfer Function? - Discovery State Space What Is State Space? - Documentation Uncertain State-Space Model - Function Sparse First-Order State-Space Model - Function Sparse Second-Order State-Space Model - Function Linear Parameter Varying - LPV and LTV Models - Documentation Time Series (ARX, ARMA) - Time Series Analysis - Documentation ZPK - Zero-Pole-Gain Model - Function Frequency Response Data - Frequency Response Data Models - Documentation

ODEs

Getting Started with Simulink for Controls (11:30) - Video Thermal Model of a House in Simulink - Example ODEs with Symbolic Math - Documentation Solving ODEs in MATLAB - Video Series Neural State Space