
November 13–14, 2024 | Online

How to Verify Satellite Links in the Lab: Orbit-Ready Testing

Colin Telfer, RLS Product Manager, Square Peg Communications

MATLAB **EXPO**

Agenda

- New age of satellite communications
- Challenges of non-terrestrial radio links
- Simulation and test to the rescue
- Real example of satellite links in the lab

A New Era for Satellite Communications

The space economy is now more accessible than ever

Dramatic drop in launch costs are igniting new SATCOM opportunities

Creating Endless Opportunities for Innovation

Reliable disaster response

Tracking global assets

Precision farming

Autonomous vehicle connectivity

D2D coverage everywhere

Turning SATCOM Ideas into Reality is No Easy Task

- Example: direct-to-device (D2D) connectivity
 - Seamless connectivity from satellite to cell phones and existing devices
 - Satellite to fill coverage gaps for cellular mobile
- Demands unique considerations
 - As technology evolves, the need for critical testing grows
 - Satcom complexity requires critical testing to ensure QoS

Complex Technology Requires Rigorous Preparation

As technology evolves, the need for critical testing and simulation increases

- Missteps mean massive costs
- There are no second chances
- Space is unpredictable, and unforgiving
- Rigorous testing is crucial

Benefits of Lab Simulation and Link Testing

- Reduce risk
- Decrease cost
- Maximize resources
- Improve schedule

Introducing MathWorks' Satellite Communications Toolbox

Simulate, analyze and test satellite communications systems and links on your workstation

% Generate satellite scenario

startTime = datetime(2024,09,12,18,35,0); stopTime = startTime + minutes(8); sampleTime_s = 1; sc = satelliteScenario(startTime,stopTime,sampleTime s);

% Create satellite object tleFile = "STARLINK-1019.tle"; sat = satellite(sc,tleFile, "Name","STARLINK-1019", ... "OrbitPropagator","sgp4");

% Create Gateway object gs = groundStation(sc, 47.5487, -52.7184, ... "Name","Gateway");

% Create User Terminal object ut = groundStation(sc, 43.5631, -72.8974, ... "Name","User Terminal");

% Configure link parameters

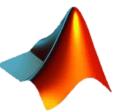
RLS-2100 - Ensuring Solutions Are Orbit-Ready

- Bring satellite and terrestrial radio simulation to life, in real time, in the lab
- Solves:
 - ✓ Integration complexities
 - ✓ Equipment challenges
 - Real time operation for extended periods

RLS-2100 Radio Link Simulator

- 1.2 GHz processing bandwidth
- Physically accurate end-to-end path simulation
- Integrated scenario modelling
- Graphical displays

- Support for all orbits LEO/MEO/GEO/HEO
- Internal GPS, OpenAMIP and ARINC simulators
- Python API

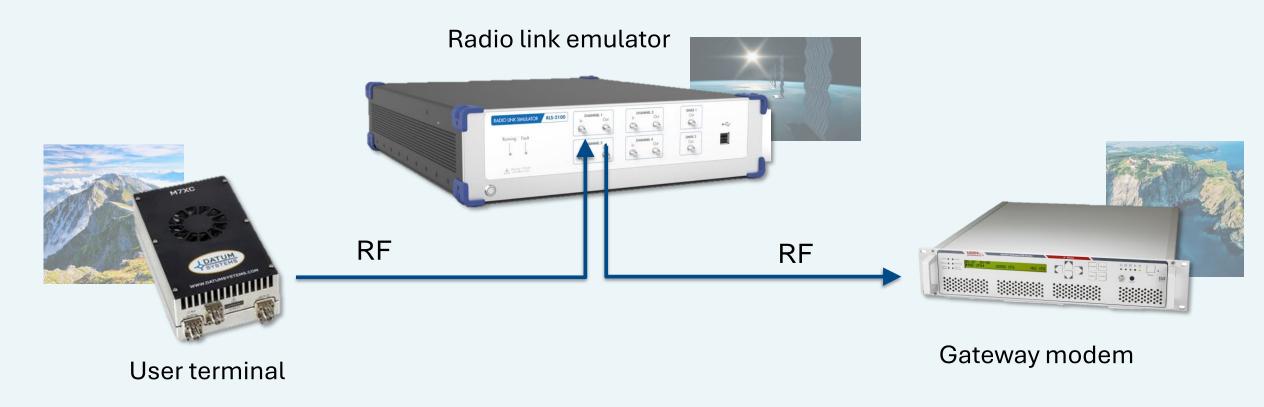

Bringing Satellite Connectivity into the Lab

Use RLS-2100 and MATLAB to test and simulate low Earth orbit (LEO) links in the lab

Modeling LEO Scenario with the Satellite Communications Toolbox

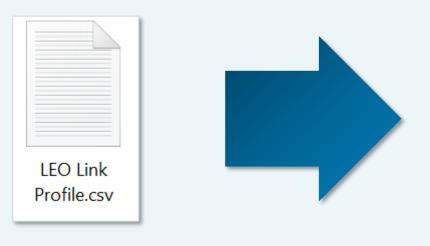
<pre>% Generate satellite scenario startTime = datetime(2024,09,12,18,35,0); stopTime = startTime + minutes(8); sampleTime_s = 1; sc = satelliteScenario(startTime,stopTime,sampleTime_s);</pre>	<pre>% Calculate delay s_delays_up = latency(sat,gs); s_delays_dn = latency(sat,ut); % Derive range</pre>	<pre>% Generate ouput profile to RLS-2100 file_header = ["#RLS-2100 Link Parameters; time_into_run",</pre>
<pre>% Create satellite object tleFile = "STARLINK-1019.tle"; sat = satellite(sc,tleFile, "Name","STARLINK-1019", "OrbitPropagator","sgp4");</pre>	<pre>ranges_up = s_delays_up * physconst("LightSpeed"); ranges_dn = s_delays_dn * physconst("LightSpeed"); offsets_s = sampleTime_s * (0:(length(s_delays_up)-1));</pre>	<pre>file_entries_up = [offsets_s; s_delays_up; fShifts_up; gains_up]'; file_entries_dn = [offsets_s; s_delays_dn; fShifts_dn; gains_dn]';</pre>
<pre>% Create Gateway object gs = groundStation(sc, 47.5487, -52.7184, "Name","Gateway");</pre>	<pre>% Calculate Doppler shift fShifts_up = dopplershift(gs,sat,Frequency=fc_up); fShifts_dn = dopplershift(sat,ut,Frequency=fc_dn);</pre>	<pre>file_contents_up = [file_header; file_entries_up]; file_contents_dn = [file_header; file_entries_dn];</pre>
% Create User Terminal object ut = groundStation(sc, 43.5631, -72.8974, "Name","User Terminal");	<pre>% Calculate propagation loss loss_up = fspl(ranges_up, physconst("LightSpeed")/fc_up); loss_dn = fspl(ranges_dn, physconst("LightSpeed")/fc_dn);</pre>	<pre>writematrix(file_contents_up, 'demo1_up.csv'); writematrix(file_contents_dn, 'demo1_dn.csv');</pre>

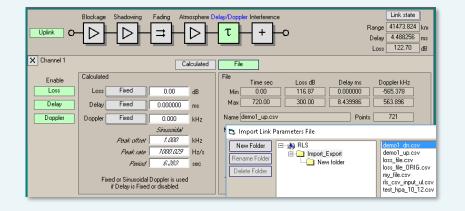
Generate scenario


Calculate channel characteristics

Output profile

Hardware-in-the-Loop Satellite Link Testing


Physical satcom equipment in the lab - connected at RF

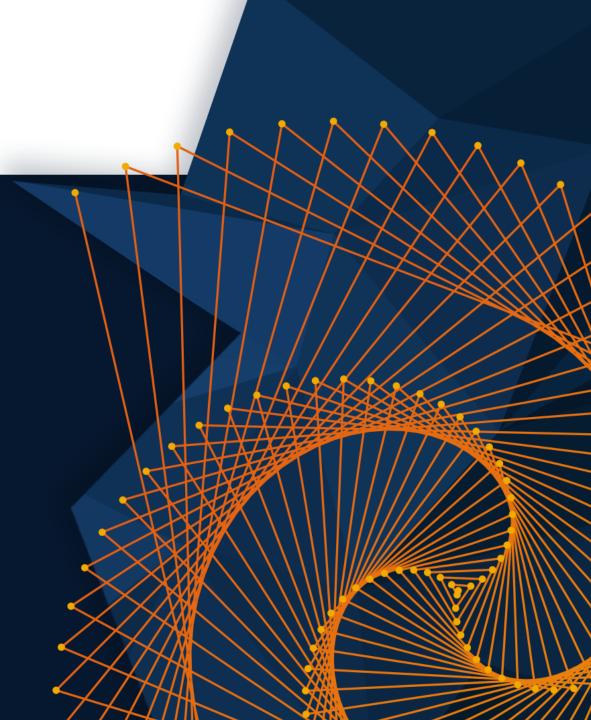


Importing the Profile from the Satellite Communications Toolbox to the RLS-2100

Output from Matlab is compatible with RLS-2100 user profile feature

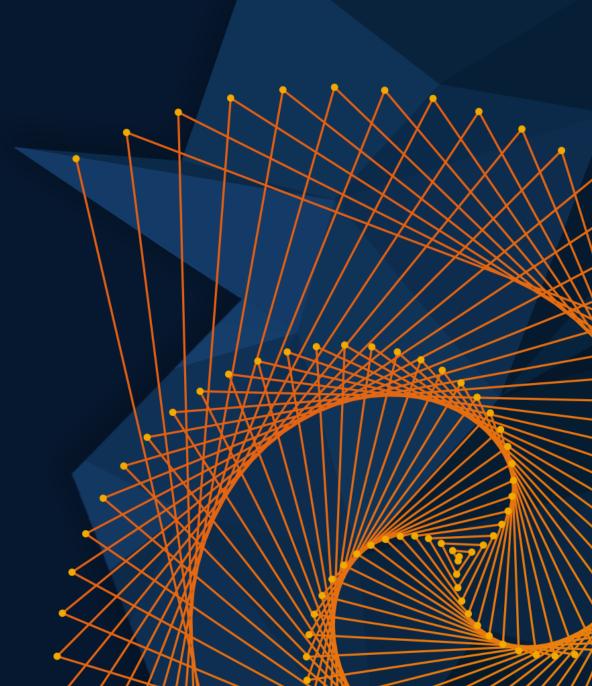
Connect with Confidence

Orbit ready applications with Square Peg Communications' RLS-2100 and MathWorks' Satellite Communications Toolbox


November 13–14, 2024 | Online

Questions?

Colin Telfer, RLS Product Manager, Square Peg Communications squarepeg.ca | LinkedIn: @square-peg-communications


MATLAB **EXPO**

MATLAB EXPO

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

