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From Idea to MCU Deployment:

Applying Tiny Machine Learning on 

FOC for PMSMs
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Motivations for interest

Developing Edge AI in the context of Motor 

Electrification poses challenges due to the 

well-known Field Oriented Control technique.

Introducing AI mandates to optimize accuracy, 

execution speed and energy efficiency, which 

requires a joint understanding of both AI and 

motor control systems.

The combination of MathWorks and 

STMicroelectronics AI methodologies and tools 

simplifies this process, easing efficient 

deployment of AI models to MCUs.

Let’s review together how this can be achieved.  
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Methodology

D$ M$ O$ MCU$      

D1 Modelize the PMSM FOC 
control loop.

DATA 
ACQUISITION 

MODELING

TINY NEURAL 

NETWORK

D2 Define Case Studies based 
on fast changing  speed.

D3 Build datasets with PIDs 
highlighting their limits.

D4 Run the experiments to 
record enough data.

M1 Set data container to 

access the data correctly 
during training steps. 

M2 Devise a feed forward NN 
for compensating PID errors.

M3 Measure the deployability

of the network by ST Edge AI  
Developer Cloud.

M4 Run the training progress 

and the seek for the best model 
configuration during validation.

O1 Seek for the most accurate 
model on the test set.

O2 Perform Hyper Parameters 

tuning for the best compromise as 
model exploring configurations.

O3 Prune the model for low-cost 
deployment on the device.

O4 Optimize model performance 

monitoring in the control loop 
(add the NN to the PID).

MCU1 Import and PTQ model 

(ONNX) by the ST Edge AI 
Developer Cloud.

MCU2 Optimize the deployment 

(required RAM size w.r.t.
inference time).

MCU3 Benchmark on ST MCUs 

and measure the inference 
time. Export detailed logs.

MCU4 Loop between PHASE 2, 

3 and 4 until a satisfactory 
solution can be signed off.

OPTIMIZATIONS
DEPLOY ON ST 

MCUs



Introduction



• The magnetic field of the permanent magnets

placed on the rotor interacts with the one

created by the synchronous sinusoidal

alternating current in the stator windings.

• This interaction produces a torque, which

causes the rotor to rotate.

• The EMF (Electromagnetic Field) force shall be

controlled to produce the required torque over

the time.

Permanent Magnet Synchronous Motor

Image Source: https://www.lumsyn.com/products/pmsm-vs-bldcImage Source: http://m.vectormagnets.com/n1854547/Permanent-magnet-

synchronous-motor.htm

https://www.lumsyn.com/products/pmsm-vs-bldc


Time Varying Magnetic Field



Mission is to generate rotations

To maximize Q Force

To minimize D Force

Rotor

PHASE A
PHASE C

PHASE B



• In FOC, simplified, PID control based

is required.

• To achieve that, Voltage and Current

signals shall be no longer sinusoidal

but direct so that the control loop

occurs de-referenced from the 3D

vector’s rotation.

• This happens through the Clark and

Park (and their inverse) transforms.

• The time varying three-phase

system in rotor’s ABC reference frame

is transformed to time invariant D Q

components.

Field-Oriented Control 



Higher top speed

FOC for PMSM 

Image Source: https://it.mathworks.com/help/sps/ref/pmsmfieldorientedcontrol.html

High energy efficiency

>> 97%to 99.5% <<

Essential for BEVs



Simulink Modeling



● The BR2804-1700KV motor operates at a

nominal voltage of 11.1V, within the X-NUCLEO-

IHM07M1's 8-48V range.

● Additionally, the motor’s maximum current of 5A

aligns closely with the board's 2.8A output peak

current per phase, making it a safe and effective

for educational purposes.

● The motor’s 7 pole pairs are well-suited for FOC,

which is efficiently handled by the X-NUCLEO-

IHM07M1 board, ensuring high torque and

smooth operation, crucial for precision control

applications.

● This motor was used to parametrize the Simulink

model

Exemplary Motor

Field oriented control dataset of a 3-phase permanent magnet synchronous motor

Nustes J.C. , Pau D.P., Gruosso G.

Data in Brief, Volume 47, 109002, April 2023

https://www.st.com/en/evaluation-tools/p-nucleo-ihm001.html

Model: Bull-Running model BR2804-1700 kV

Nominal voltage:  11.1 V DC (battery up to 3S) 

Maximum DC current: 5 A 

Poles: 7 pole pairs

Max speed: 19,000 RPM



Speed control unit
Current control unit

@ https://github.com/heixiaopengyou/TINY-ML-for-FOC-of-PMSM-20092024

FOC of PMSM (Simulink) 



A Wide Set of Resources



Problem definition and Requirements



• Case 1 introduced a speed

signal with 2 transitions per

second.

• The PI(D) controller struggled

to quickly adapt to rapid changes

in the reference speed leading to

poor dynamic performances

and sluggish responses.

• Moreover, it produces

significant (0.81) deviation and

longer settling times, impacting

the precision and stability of

motor control.

Case Study 1

Presence of Overshoots 

during varying speeds

Current fluctuations

Overshoots

Current variation over control interval
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Case Study 2

● Case 2 introduced even more

transitions (10) in one second.

● At even faster transitions, though

the PI(D) controller follows the

overall speed trend, it significantly

fails to stabilize around the desired

speed (for each interval).

● This since the calculated reference

(quadrature q) current generated by

the speed PI(D) controller contains

deviations (errors) for most of the

time steps

PI(D) speed control over a 7 seconds interval, with about 10 Hz  speed variations

Poor control over each interval Reference current display over 2 seconds interval
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● Correcting PI(D) signals requires extra

computations.

● These approaches shall be deployable

on tiny MCUs.

● Two ST MCU boards, automotive

(Stellar) and IoT (STM32), have been

considered.

Embedded MCU Targets

Board: SR5R1-EVBE3000D

Processor Speed: 300 MHz

Internal RAM: 256 KiB

Internal Flash: 1920 KiB

Board: NUCLEO-G474RE

Processor Speed: 170 MHz

Internal RAM: 128 KiB

Internal Flash: 512 KiB



Approach devised



AI Augmented FOC

Uncompensated 

reference current

Compensated 

reference 

current

Speed control set-up, with TinyNN to predict the PI(D)’s deviations

PROPOSED



Network Topology

Model visualized by 

MATLAB R2024a

• The proposed model (w/o spatial 

dilation) was a 1.4 K (weights) 

model size, moderately deep with 

residual connections.

• Ratio training samples and weights 

= 171.4

Model visualized by ST Edge AI 

Developer Cloud



Experimental Results



Case Study 1
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Time [s] Time [s]

Max Deviation Average 

Deviation

Max overshoot

PI(D) 0.81 0.05 0.24

PI(D) + 

TinyNN

0.89 0.02 0.03

Percentage 

Change (%)

+10 - 60 - 87.5



Case Study 2
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Time [s] Time [s]

Max Deviation Average 

Deviation

Max overshoot

PI(D) 1.21 0.18 0.25

PI(D) + 

TinyNN

1.19 0.15 0.08

Percentage 

Change (%)

- 1.65 - 16.7 - 68



• The objective was to further reduce

the number of trainable parameters.

• Obtained the best model iterating

through several model

configurations.

• Each model was trained over the

same number of iterations as the

initial model, and the model with

least MSE was found.

Hyper Parameters Optimization

Best MSE

Reference: https://www.mathworks.com/help/stats/bayesopt.html

https://www.mathworks.com/help/stats/bayesopt.html


HPO results
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Time [s]

Case 1

Trainables Max 

Deviation 

Average 

Deviation

Max 

overshoot

PI(D) + 

TinyNN
1.4 K 0.89 0.02 0.03

PI(D) + HPO 

TinyNN
0.67 K 0.896 0.0316 0.06

Percentage 

Change (%)
- 52.1 +0.67 +58 +100

Case 2

Trainables Max 

Deviation 

Average 

deviation

Max 

overshoot

PI(D) + 

TinyNN

1.4 K 1.19 0.15 0.08

PI(D) + HPO 

TinyNN

0.34 K 1.23 0.15 1.24

Percentage 

Change (%)

-75.7 +3.36 No 

change

+1450



Pruning results
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Time [s]

Trainables Max 

Deviation 

Average 

Deviation

Max 

overshoot

PI(D) + 

TinyNN

1.4 K 0.89 0.02 0.03

PI(D) + 

Pruned 

TinyNN

0.873 K 0.9 0.02 ~ 0.0

Percentage 

Change (%)
-37.64 + 1.12 No 

change

-100

Trainables Max 

Deviation 

Average 

deviation

Max overshoot

PI(D) + 

TinyNN

1.4 K 1.19 0.15 0.08

PI(D) + 

Pruned 

TinyNN

0.6 K 1.20 0.16 0.03

Percentage 

Change 

(%)

-57.14 +0.84 +6.67 -62.5

Case 1 Case 2



Deployability on MCU



8bits Post Training Quantization (PTQ)

https://stm32ai-cs.st.com/home

https://stm32ai-cs.st.com/home


Number of 

Parameters
MACC FLASH

(KiB)

RAM

(KiB)

Execution Time

(us)

Fp32 Tiny 

NN
1400 1620 Weights: 5.68

Library STM32: 15

Library Stellar-E: 16

Activations: 0.199

Library: 6

NUCLEO-G474RE     

207.4

SR5E1-EVBE3000D  

92.8

HPO Model 670 764 Weights: 2.61

Library STM32: 15

Library Stellar-E: 16

Activations: 0.152

Library: 6

NUCLEO-G474RE     

144.8

SR5E1-EVBE3000D  

69.4

Pruned 

Model
873 1034 Weights: 3.28

Library STM32: 20

Library Stellar-E: 20

Activations: 0.148

Library: 10

NUCLEO-G474RE    

232.2

SR5E1-EVBE3000D  

102.4

8 bits 

Quantized 

Pruned NN 

on ST Edge 

AI Dev Cloud

873 910 Weights: 1.37

Library STM32: 32

Library Stellar-E: 30

Activations: 0.383

Library: 13 

NUCLEO-G474RE 

371.7   

SR5E1-EVBE3000D

167.9 

Case 1



Case 2
Number of 

Parameters
MACC FLASH

(KiB)

RAM

(KiB)

Execution Time

(us)

Fp32 Tiny NN 1400 1620 Weights: 5.68

Library STM32: 15

Library Stellar-E: 16

Activations: 0.199

Library: 6

NUCLEO-G474RE     

207.4

SR5E1-EVBE3000D  

92.8

HPO Model 340 470 Weights: 1.33

Library STM32: 15

Library Stellar-E: 16

Activations: 

0.105

Library: 6

NUCLEO-G474RE     

127.6

SR5E1-EVBE3000D  

61.2

Pruned Model 600 760 Weights: 2.26

Library STM32: 20

Library Stellar-E: 20

Activations: 0.145

Library: 10

NUCLEO-G474RE     

215.2

SR5E1-EVBE3000D  

96.20

8 bits 

Quantized 

Pruned NN 

on ST Edge 

AI Dev Cloud

600 640 Weights: 1.07

Library STM32: 32

Library Stellar-E: 32

Activations: 0.360

Library: 13 

NUCLEO-G474RE 

361.4   

SR5E1-EVBE3000D

112.1 



Future Work



• Extend AI approach.

• Study TinyNN HW

acceleration. E.g. at

100KHz to close the

control loop in 10µs.

• Tests on the field with real

PMSM motors.

• Introduce new case

studies.

• Explore quantization.

Future Works



© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. 

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be 

trademarks or registered trademarks of their respective holders.

Thank you

danilo.pau@st.com



Share the EXPO experience 

#MATLABEXPO
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