MATLAB EXPO

November 13–14, 2024 | Online

From Idea to MCU Deployment: Applying Tiny Machine Learning on FOC for PMSMs

Danilo Pau, Technical Director, IEEE and ST Fellow

System Research and Applications, STMicroelectronics

Motivations for interest

life.augmented

Developing Edge AI in the context of Motor Electrification poses challenges due to the well-known Field Oriented Control technique.

Introducing AI mandates to optimize accuracy, execution speed and energy efficiency, which requires a joint understanding of both AI and motor control systems.

The combination of MathWorks and STMicroelectronics AI methodologies and tools simplifies this process, easing efficient deployment of AI models to MCUs.

Let's review together how this can be achieved.

Embedded Systems

Methodology			
D\$	M\$	O\$	MCU\$
DATA ACQUISITION	MODELING TINY NEURAL NETWORK	OPTIMIZATIONS	DEPLOY ON ST MCUs ST Edge Al Developer Cloud
D1 Modelize the PMSM FOC control loop.	M1 Set data container to access the data correctly during training steps.	O1 Seek for the most accurate model on the test set.	MCU1 Import and PTQ model (ONNX) by the ST Edge AI Developer Cloud.
D2 Define Case Studies based on fast changing speed.	M2 Devise a feed forward NN for compensating PID errors.	O2 Perform Hyper Parameters tuning for the best compromise as model exploring configurations.	MCU2 Optimize the deployment (required RAM size w.r.t. inference time).
D3 Build datasets with PIDs highlighting their limits.	M3 Measure the deployability of the network by ST Edge AI Developer Cloud.	O3 Prune the model for low-cost deployment on the device.	MCU3 Benchmark on ST MCUs and measure the inference time. Export detailed logs.
D4 Run the experiments to record enough data.	M4 Run the training progress and the seek for the best model configuration during validation.	O4 Optimize model performance monitoring in the control loop (add the NN to the PID).	MCU4 Loop between PHASE 2, 3 and 4 until a satisfactory solution can be signed off.

Introduction

Permanent Magnet Synchronous Motor

- The magnetic field of the permanent magnets placed on the rotor interacts with the one created by the synchronous sinusoidal alternating current in the stator windings.
- This interaction produces a torque, which causes the rotor to rotate.
- The EMF (Electromagnetic Field) force shall be controlled to produce the required torque over the time.

Image Source: <u>http://m.vectormagnets.com/n1854547/Permanent-magnet-</u> synchronous-motor.htm

Time Varying Magnetic Field

Mission is to generate rotations

Field-Oriented Control

- In FOC, simplified, PID control based is required.
- To achieve that, Voltage and Current signals shall be no longer sinusoidal but direct so that the control loop occurs de-referenced from the 3D vector's rotation.
- This happens through the Clark and Park (and their inverse) transforms.
- The time varying three-phase system in rotor's ABC reference frame is transformed to time invariant D Q components.

FOC for PMSM

Higher top speed

High energy efficiency
>> 97%to 99.5% <<</pre>

Essential for BEVs

Image Source: https://it.mathworks.com/help/sps/ref/pmsmfieldorientedcontrol.html

Simulink Modeling

WHITE BOX	GREY BOX	BLACK BOX
FIRST PRINCIPLESPHYSICAL MODELING WITH SIMSCAPE $d \approx$ $d \neq$ $f(t)$ $f(t)$ SPRING $f(t)$ SPRING $d \approx$ $d \neq$ $f(t)$ SPRING $f(t)$ REFERENCE	GREY BOX ODEs PARAMETER ESTIMATION $d \neq (t) = \begin{bmatrix} 0 & t \\ 0 & t \end{bmatrix} \times (t) + \begin{bmatrix} 0 \\ 0 \end{bmatrix} w(t)$ IN SIMULINK MODELS $d \neq t = \begin{bmatrix} 0 & t \\ 0 & t \end{bmatrix} \times (t) + \begin{bmatrix} 0 \\ 0 \end{bmatrix} w(t)$ Image: the state of the sta	SYSTEM IDENTIFICATION (TRADITIONAL AND AI-BASED) ONLINE ESTIMATION MODEL ANALYSIS SYSTEM IDENTIFICATION DATA PREPARATION OFFLINE ESTIMATION OFFLINE ESTIMATION

Model Manipulation Modify models through transformation, linearization, and order reduction methods.

Model Transformation		Linearization		Reduced Order Modeling	
MODEL TYPE	CONTINUOUS-DISCRETE	NUMERICAL PERTURBATION	BLOCK-BY-BLOCK	MODEL-BASED	DATA-DRIVEN

Exemplary Motor

- The BR2804-1700KV motor operates at a nominal voltage of 11.1V, within the X-NUCLEO-IHM07M1's 8-48V range.
- Additionally, the motor's maximum current of 5A aligns closely with the board's 2.8A output peak current per phase, making it a safe and effective for educational purposes.
- The motor's 7 pole pairs are well-suited for FOC, which is efficiently handled by the X-NUCLEO-IHM07M1 board, ensuring high torque and smooth operation, crucial for precision control applications.
- This motor was used to parametrize the Simulink model

https://www.st.com/en/evaluation-tools/p-nucleo-ihm001.html

Model: Bull-Running model BR2804-1700 kV Nominal voltage: 11.1 V DC (battery up to 3S) Maximum DC current: 5 A Poles: 7 pole pairs Max speed: 19,000 RPM

Field oriented control dataset of a 3-phase permanent magnet synchronous motor Nustes J.C., Pau D.P., Gruosso G. Data in Brief, Volume 47, 109002, April 2023

7 @ https://github.com/heixiaopengyou/TINY-ML-for-FOC-of-PMSM-20092024

life.augmented

A Wide Set of Resources

MathWorks® Prodotti Soluzioni Università Assistenza Community Eventi **Help Center** Search Help Center ■ INDICE 📕 Trials 📲 Documentation Examples Blocks Videos Answers

Utilize the reference examples to implement sensor-based and sensorless motor control algorithms ranging from conventional to advanced techniques for PMSM.

Permanent Magnet Synchronous Motors (PMSM)

Motor control reference examples for PMSM

« Motor Control Blockset

« Documentation Home

« Applications

« Control Systems

« Types of Motors

Category

Permanent Magnet Synchronous Motors (PMSM)

Brushless DC (BLDC) Motors

Induction Motors

Switched Reluctance Motors (SRM)

Synchronous Reluctance Motors (SynRM)

Acc

Problem definition and Requirements

Case Study 1

- **Case 1** introduced a speed signal with 2 transitions per second.
- The PI(D) controller struggled to quickly adapt to rapid changes in the reference speed leading to poor dynamic performances and sluggish responses.
- Moreover, it produces significant (0.81) deviation and longer settling times, impacting the precision and stability of motor control.

Case Study 2

- **Case 2** introduced even more transitions (10) in one second.
- At even faster transitions, though the PI(D) controller follows the overall speed trend, it **significantly fails** to stabilize around the desired speed (for each interval).
- This since the calculated reference (quadrature **q**) current generated by the speed PI(D) controller contains deviations (errors) for most of the time steps

Embedded MCU Targets

Board: **SR5R1-EVBE3000D** Processor Speed: 300 MHz Internal RAM: 256 KiB Internal Flash: 1920 KiB

Board: **NUCLEO-G474RE** Processor Speed: 170 MHz Internal RAM: 128 KiB Internal Flash: 512 KiB

- Correcting PI(D) signals requires extra computations.
- These approaches shall be deployable on tiny MCUs.
- Two ST MCU boards, automotive (Stellar) and IoT (STM32), have been considered.

Approach devised

AI Augmented FOC

Speed control set-up, with TinyNN to predict the PI(D)'s deviations

Network Topology

life.augmented

- The proposed model (w/o spatial dilation) was a 1.4 K (weights) model size, moderately deep with residual connections.
- Ratio training samples and weights = 171.4

Model visualized by ST Edge Al Developer Cloud

Experimental Results

Case Study 1

	Max Deviation	Average Deviation	Max overshoot
PI(D)	0.81	0.05	0.24
PI(D) + TinyNN	0.89	0.02	0.03
Percentage Change (%)	+10	- 60	- 87.5

Case Study 2

	Max Deviation	Average Deviation	Max overshoot
PI(D)	1.21	0.18	0.25
PI(D) + TinyNN	1.19	0.15	0.08
Percentage Change (%)	- 1.65	- 16.7	- 68

Hyper Parameters Optimization

- The objective was to further reduce the number of trainable parameters.
- Obtained the best model iterating through several model configurations.
- Each model was trained over the same number of iterations as the initial model, and the model with least MSE was found.

Reference: https://www.mathworks.com/help/stats/bayesopt.html

HPO results

	Trainables	Max Deviation	Average Deviation	Max overshoot
PI(D) + TinyNN	1.4 K	0.89	0.02	0.03
PI(D) + HPO TinyNN	0.67 K	0.896	0.0316	0.06
Percentage Change (%)	- 52.1	+0.67	+58	+100

Case 1

	Trainables	Max Deviation	Average deviation	Max overshoot
PI(D) + TinyNN	1.4 K	1.19	0.15	0.08
PI(D) + HPO TinyNN	0.34 K	1.23	0.15	1.24
Percentage Change (%)	-75.7	+3.36	No change	+1450

Case 2

Time [s]

Pruning results

life.augmented

	Trainables	Max Deviation	Average Deviation	Max overshoot
PI(D) + TinyNN	1.4 K	0.89	0.02	0.03
PI(D) + Pruned TinyNN	0.873 K	0.9	0.02	~ 0.0
Percentage Change (%)	-37.64	+ 1.12	No change	-100

	Trainables	Max Deviation	Average deviation	Max overshoot
PI(D) + TinyNN	1.4 K	1.19	0.15	0.08
PI(D) + Pruned TinyNN	0.6 K	1.20	0.16	0.03
Percentage Change (%)	-57.14	+0.84	+6.67	-62.5

Deployability on MCU

	L77	
	INPUT OUTPUT MODEL TYPE	
Select another model		Show Graph
STM2 ACU STM2 Morecentratier units	STM22 ACU with Neural-ART** STM22 Moreconsiliers enleading Neural Processing Unit (IPU)	STIA2 APUs STIA2 Mologorosision Units (MPU)
Start with General Purpose STM32 Discovery Kits and Nucleos Latest (9.0.0) - Select	Start with STM32 MCUs including Neural-ART TH to accelerate your Al applications	Start with STM32 Microprocessors embedding Cortex-A loaded with X_LINUX-AI
Seta-E MCUs Stefa-E Microcontroller units	MEMS Sensors with NEXIS sensors feature and processing unit	ISPU mg an embedded intelligent (((3FPU))
	Start with MEMS Serv	tors embedding ISPU, an ultralow power, computationally efficient, high-
Start with Stellar electrification (E) to empower neural netw MCUs	xk architectures on automotive performance program edge	mable core that can execute signal processing and AI algorithms in the

8bits Post Training Quantization (PTQ)

Apply post-training quantization Powered by Onnx Runtime	0
Disable per channel quantization	Load a dataset to check the accuracy obtained after quantization
	Load file (.npz)
	Launch quantization 🕨 Σ
Quantized models	
netProjCase2_PerChannel_quant_random_1.onnx Content Length: 48.92 KIB Last Modified: 9/1/24, 2:47 PM	🛓 📋 Select

https://stm32ai-cs.st.com/home

Case 1

	Number of Parameters	MACC	FLASH (KiB)	RAM (KiB)	Execution Time (us)
Fp32 Tiny	1400	1620	Weights: 5.68	Activations: 0.199	NUCLEO-G474RE
ININ			Library STM32: 15	Library: 6	SR5E1-EVBE3000D
			Library Stellar-E: 16		92.8
HPO Model	670	764	Weights: 2.61	Activations: 0.152	NUCLEO-G474RE
			Library STM32: 15	Library: 6	144.8 SR5E1-EVBE3000D
			Library Stellar-E: 16		69.4
Pruned	873	1034	Weights: 3.28	Activations: 0.148	NUCLEO-G474RE
Model			Library STM32: 20	Library: 10	232.2 SR5E1-EVBE3000D
			Library Stellar-E: 20		102.4
8 bits	873	910	Weights: 1.37	Activations: 0.383	NUCLEO-G474RE
Quantized Pruned NN			Library STM32: 32	Library: 13	371.7 SR5E1-EVBE3000D
on ST Edge Al Dev Cloud			Library Stellar-E: 30		167.9

Case 2

	Number of Parameters	MACC	FLASH (KiB)	RAM (KiB)	Execution Time (us)
Fp32 Tiny NN	1400	1620	Weights: 5.68	Activations: 0.199	NUCLEO-G474RE 207.4
			Library Stellar-E: 16	Library: 6	SR5E1-EVBE3000D 92.8
HPO Model	340	470	Weights: 1.33	Activations: 0.105 Library: 6	NUCLEO-G474RE 127.6 SR5E1-EVBE3000D 61.2
			Library STM32: 15		
			Library Stellar-E: 16		
Pruned Model	600	760	Weights: 2.26	Activations: 0.145	NUCLEO-G474RE 215.2 SR5E1-EVBE3000D 96.20
			Library STM32: 20	Library: 10	
			Library Stellar-E: 20		
8 bits Quantized Pruned NN on ST Edge AI Dev Cloud	600	640	Weights: 1.07	Activations: 0.360	NUCLEO-G474RE 361.4 SR5E1-EVBE3000D 112.1
			Library STM32: 32	Library: 13	
			Library Stellar-E: 32		

Future Work

Future Works

- Extend AI approach.
- Study TinyNN HW acceleration. E.g. at 100KHz to close the control loop in 10µs.
- Tests on the field with real PMSM motors.
- Introduce new case studies.
- Explore quantization.

Thank you danilo.pau@st.com

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

1

.

MathWorks 🤣 @MathWorks

Share the EXPO experience #MATLABEXPO

