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Motivations for interest

.~ 7 Developing Edge Al in the context of Motor
Electrification poses challenges due to the
well-known Field Oriented Control technique.
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Introducing Al mandates to optimize accuracy,
execution speed and energy efficiency, which
requires a joint understanding of both Al and
motor control systems.

Let’s review together how this can be achieved.
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Methodology

D3

4

DATA
ACQUISITION

D1 Modelize the PMSM FOC
control loop.

D2 Define Case Studies based
on fast changing speed.

D3 Build datasets with PIDs
highlighting their limits.

D4 Run the experiments to
record enough data.

M1 Set data container to
access the data correctly
during fraining steps.

M2 Devise a feed forward NN
for compensating PID errors.

M3 Measure the deployability
of the network by ST Edge Al
Developer Cloud.

M4 Run the training progress
and the seek for the best model
configuration during validation.

OPTIMIZATIONS

01 Seek for the most accurate
model on the test set.

02 Perform Hyper Parameters

tuning for the best compromise as

model exploring configurations.

O3 Prune the model for low-cost
deployment on the device.

04 Optimize model performance

monitoring in the control loop
(add the NN to the PID).

L

DEPLOY ON ST
MCUs

ST Edge Al Developer Cloud

MCU1 Import and PTQ model
(ONNX) by the ST Edge Al
Developer Cloud.

MCU2 Optimize the deployment
(required RAM size w.r.t.
inference time).

MCU3 Benchmark on ST MCUs
and measure the inference
time. Export detailed logs.

MCU4 Loop between PHASE 2,
3 and 4 until a satisfactory
solution can be signed off.
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Permanent Magnet Synchronous Motor

* The magnetic field of the permanent magnets
placed on the rotor interacts with the one
created by the synchronous sinusoidal
alternating current in the stator windings. Rotor Stator

°* This Interaction produces a torque, which
causes the rotor to rotate.

* The EMF (Electromagnetic Field) force shall be Permanent

controlled to produce the required torque over
the time.

magnets

Windings

‘ ,’ Image Source: http://m.vectormagnets.com/n1854547/Permanent-magnet- Image Source: https://www.lumsyn.com/products/pmsm-vs-bldc
life.augmented synchronous-motor.htm



https://www.lumsyn.com/products/pmsm-vs-bldc

Time Varying Magnetic Field
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Mission Is to generate rotations

Visualization of 3-Phase Current Vector
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Stator Winding C / C Phase
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Z Axis

D Force X Axis

(Direct)
To maximize Q Force
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Field-Oriented Control

In FOC, simplified, PID control based

Is required. Three Phase 120° Reference Frame  Two Phase Reference Frame  Rotating Reference Frame
To achieve that, Voltage and Current . >

signals shall be no longer sinusoidal I : v
but direct so that the control loop g >

occurs de-referenced from the 3D

vector’s rotation. e v s

This happens through the Clark and
Park (and their inverse) transforms.

The time varying three-phase
system in rotor's ABC reference frame
Is transformed to time invariant D Q
components.
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FOC for PMSM

HV
EII’h}r:iuzll system . Supply
Higher top speed - :
Power
Converter
High energy efficiency 4
. *
>> 97%t0 99.5% << of |
Position
Sensor | Vsinr
_ Signal Vo | PMSM
Essential for BEVs Processing [¢

Image Source: https://it. mathworks.com/help/sps/ref/pmsmfieldorientedcontrol.html
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Model Parameters

MODELING BASED ON PHYSICAL LAWS

ZPK

WHITE BOX

PHYSICAL MODELING
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Model Transformation

MODEL TYPE

CONTINUOUS-DISCRETE

PARAMETER ESTIMATION

GREY BOX ODEs
IN SIMULINK MODELS

[o

x(¢) +

Nr O

PARAMETER ESTIMATOR

NUMERICAL PERTURBATION

Determine model parameters through first principles, grey box, and data-driven methods.

PYTHON
IMPORTERS

PY

NEURAL NETWORK

S-FUNCTIONS

-

MODELING BASED ON SYSTEM DATA
BLACK BOX

SYSTEM IDENTIFICATION (TRADITIONAL AND AI-BASED)

SYSTEM IDENTIFICATION

DATA PREPARATION

B

Model Manipula‘l'ion Modify models through transformation, linearization, and order reduction methods.
Linearization

BLOCK-BY-BLOCK

ONLINE ESTIMATION MODEL ANALYSIS

OFFLINE ESTIMATION

Reduced Order Modeling

MODEL-BASED DATA-DRIVEN




Exemplary Motor

® The BR2804-1700KV motor operates at a
nominal voltage of 11.1V, within the X-NUCLEO-
IHMO7M1's 8-48V range.

e Additionally, the motor's maximum current of 5A
aligns closely with the board's 2.8A output peak
current per phase, making it a safe and effective
for educational purposes.

® The motor’'s 7 pole pairs are well-suited for FOC,
which is efficiently handled by the X-NUCLEO-
IHMO7M1 board, ensuring high torque and

https://www.st.com/en/evaluation-tools/p-nucleo-ihm001.html

smooth operation, crucial for precision control Model: Bull-Running model BR2804-1700 kV
applications. Nominal voltage: 11.1V DC (battery up to 3S)
Maximum DC current: 5 A
® This motor was used to parametrize the Simulink Poles: 7 pole pairs
model Max speed: 19,000 RPM
Field oriented control dataset of a 3-phase permanent magnet synchronous motor
"’ Nustes J.C. , Pau D.P., Gruosso G.

life.augmented Data in Brief, Volume 47, 109002, April 2023



FOC of PMSM (Simulink)

Speed ref

Input

Speed Ref  Speed Refl

O— F
Speed_Ref PU

Speed_Ref_Selector
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|m == I Speed tracking
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Speed control unit
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Calculate postion and speed
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Current control unit
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A Wide Set of Resources

‘MathWorks-& Prodotti  Soluzioni  Universitda ~ Assistenza Community  Eventi Act

Help Center

-

= INDICE Documentation  Examples Blocks  Videos  Answers § Trials

« Documentation Home
Permanent Magnet Synchronous Motors (PMSM)

« Control Systems Mator control reference examples for PMSM

« Motor Control Blockset

« Applications Utilize the reference examples to implement sensor-based and sensorless motor control algorithms ranging from conventional to advanced technigues for PMSM

« Types of Motors
Featured Examples

Category ‘pan Loop Control o phase motors PNSN Pararmeter Exsimalicn PMSM Faramatar Estimaian on Real-Tina Targat . .l
Permanent Magnet Synchronous T T GG R e o et L e — . 2
Motors (PMSM) i P LS |
Brushless DC (BLDC) Motors P ) 'w_jl\.x:
Induction Motors - ] -
| | T
Switched Reluctance Motors (SRM) e
Synchronous Reluctance Motors R T — _
(SynRM) _— | — [
Run 3-Phase AC Motors in Estimate PMSM Parameters Estimate PMSM Parameters Estimate PMSM Parameters Estimate PMSM Parameters Estimate PMSM Parameters
Open-Loop Control and Using Recommended Using Custom Hardware Using Parameter Estimation Using Parameter Estimation Using FPGA-Based Motor
Calibrate ADC Offset Hardware Blocks Blocks on Real-Time... Control Development Kit
Uses open-loop control (also known Determines the parameters of a Includes an algorithm to determine Uses the parameter estimation Uses the parameter estimation Estimate parameters of a permanent
as scalar control or Volts/Hz permanent magnet synchronous the parameters of a permanent blocks provided by Mator Control blocks provided by Mator Control magnet synchronous motor (PMSM)
control) to run a motor. This mator (PMSM) using the magnet synchronous moter (PMSM) Blockset™ to estimate these Blockset™ to estimate these using blocks from Motor Control
technique varies the stator voltage recommended Texas Instruments® using any custom motor-control parameters of a permanent magnet parameters of a permanent magnet Blockset™ on an FPGA device (Trenz

Mt Thi sevrgls i ua 8T F3KEn corrra be &

s et s A rwertar conacond i 3 SV Mzl
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A
|
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Hall 2 |

[ pe
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s ke

ah
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[ Paied spaed

‘ ' ’ Sensorless Field-Oriented Hall Offset Calibration for Field-Oriented Control of Quadrature Encoder Offset Field-Oriented Control of Field-Weakening Control

Control of PMSM PMSM PMSM Using Hall Sensor Calibration for PMSM PMSM Using Quadrature (with MTPA) of PMSM
Encoder
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Case Study 1
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Case 1 introduced a speed
signal with 2 transitions per
second.

The PI(D) controller struggled
to quickly adapt to rapid changes
In the reference speed leading to
poor dynamic performances
and sluggish responses.

Moreover, it produces
significant (0.81) deviation and
longer settling times, impacting
the precision and stability of
motor control.
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Case Study 2
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Poor control over each interval
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0 1 ‘2 3 4
e [s]
PI(D) spegll control over a 7 seconds interv

Quadrature Current [A]

Time [s]

Reference current display over 2 seconds interval

Case 2 introduced even more
transitions (10) in one second.

At even faster transitions, though
the PI(D) controller follows the
overall speed trend, it significantly
fails to stabilize around the desired
speed (for each interval).

This since the calculated reference
(quadrature ) current generated by
the speed PI(D) controller contains
deviations (errors) for most of the
time steps




Embedded MCU Targets

Board: SR5R1-EVBE3000D
Processor Speed: 300 MHz

Internal RAM: 256 KiB
Internal Flash: 1920 KiB

“
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Board: NUCLEO-G474RE
Processor Speed: 170 MHz
Internal RAM: 128 KiB
Internal Flash: 512 KiB

Correcting PI(D) signals requires extra
computations.

These approaches shall be deployable
on tiny MCUSs.

Two ST MCU boards, automotive
(Stellar) and IoT (STM32), have been
considered.
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Al Augmented FOC

PROPOSED

Correction
r——Pp
SpeedRef ) l:] I uT —| sequen fe_10 ¥ I
SrieedMeas 1 rls I lq_ref
@ ramsposed Sequence
Speed_meas N I Correction NN I \
N ' < | | | | | | ]
re
- C ——»lp Compensated
(2) o reference
N_fb i M, PR I ’ current

Uncompensated
—>I>0—>ﬂ reference current

Discrete Pl Controller
with anti-windup & reset

Speed control set-up, with TinyNN to predict the PI(D)’s deviations
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Network To
[=]

P
E:"q:cu .
 The proposed model (w/o spatial
= dilation) was a 1.4 K (weights)
model size, moderately deep with
- - - residual connections.
= « Ratio training samples and weights
=171.4
= o
== - E:I'q:cu = !
—
—
.
"I Model visualized by Model visualized by ST Edge Al

lite.augmented MATLAB R2024a Developer Cloud



Experimental Results




Speed [RPM/104]

Case Study 1

Max Deviation Average Max overshoot
Deviation
PI(D) 0.81 0.05 0.24
PI(D) + 0.89 0.02 0.03
TinyNN
Percentage +10 - 60 -87.5

Change (%)

)

v

life.augmented

Time [s]

Time [s]




Speed [RPM/104]

Case Study 2

Max Deviation Average Max overshoot
Deviation
PI(D) 1.21 0.18 0.25
PI(D) + 1.19 0.15 0.08
TinyNN
Percentage - 1.65 - 16.7 - 68
Change (%)
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W ﬂ\vﬂv i Wﬂﬁ W iy i T Tiq - Wm& LiriHTe
BRI — 1 JNE P e
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| | L | o I S S
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Hyper Parameters Optimizatio

Min objective vs. Number of function evaluations

Min observed objective
Estimated min objective

1 . 3 4 5 3] 7
Function evaluations

n

0.68

10.67

10.66

10.65

10.64

10.63

0.62

Min objective

The objective was to further reduce
the number of trainable parameters.

Obtained the best model iterating
through several model
configurations.

Each model was trained over the
same number of iterations as the
initial model, and the model with
least MSE was found.

:’, Reference: https://www.mathworks.com/help/stats/bayesopt.html
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HPO results

Lys
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Trainables | Max Average Max

Deviation | Deviation overshoot
PI(D) + 14K 0.89 0.02 0.03
TinyNN
PI(D) + HPO 0.67 K 0.896 0.0316 0.06
TinyNN
Percentage -52.1 +0.67 +58 +100
Change (%)

Case 1

Speed [RPM/10%]

Time [s]

Trainables Max Average Max
Deviation | deviation overshoot
PI(D) + 14K 1.19 0.15 0.08
TinyNN
PI(D) + HPO | 0.34K 1.23 0.15 1.24
TinyNN
Percentage -75.7 +3.36 +1450
Change (%)
Case 2




Pruning results

life.augmented

Trainables | Max Average Max
Deviation Deviation overshoot
PI(D) + 14K 0.89 0.02 0.03
TinyNN
PI(D) + 0.873 K 0.9 0.02 ~0.0
Pruned
TinyNN
Percentage | .37 64 | + 1.12 -100
Change (%)
Case 1
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e [ |
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Trainables | Max Average Max overshoot
Deviation | deviation

PI(D) + 14K 1.19 0.15 0.08
TinyNN

PI(D) + 0.6 K 1.20 0.16 0.03
Pruned

TinyNN

Percentage | .57 14 | +0.84 | +6.67 -62.5
Change

(%)

Case 2




Deployability on MCU




. 8bits Post Training Quantization (PTQ)
ST Edge Al
Developer Cloud .

ig,‘ Powered by Onnx Runtime

<72 .
244 Disable per channel quantization Load a dataset to check the accuracy obtained after quantization

INPUT OUTPUT MODEL TYPE

o Load file (.npz) [I]J 0

Ifno

ntization file is provided,

STMI2 MCUS STMI2 MCU with STMI2 MPUs ur with random
will accur with random

Neural ART™

Launch quantization p

Quantized models
Stellar-E MCUs MEMS Sensors with ISPU
netProjCase2_PerChannel_quant_random_1.onnx
Content Length: 46.92 Kig ¥ §  seeat
Last Modified: 9/1/24, 2:47 PM

Seiect Latest (2.0.0 Seiect

32al-cs.st.co
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https://stm32ai-cs.st.com/home

Case 1

Lys
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Number of | MACC | FLASH RAM Execution Time
Parameters (KiB) (KiB) (us)
Fp32 Tiny 1400 1620 | Weights: 5.68 Activations: 0.199 | NUCLEO-G474RE
NN _ _ 207.4
Library STM32:15 | | iprary: 6 SR5E1-EVBE3000D
Library Stellar-E: 16 92.8
HPO Model 670 764 Weights: 2.61 Activations: 0.152 | NUCLEO-G474RE
_ 144.8
Library STM32: 15 | | iprary: 6 SR5E1-EVBE3000D
Library Stellar-E: 16 69.4
Pruned 873 1034 | Weights: 3.28 Activations: 0.148 | NUCLEO-G474RE
Model _ _ 232.2
Library STM32:20 | | iprary: 10 SR5E1-EVBE3000D
Library Stellar-E: 20 102.4
8 bits 873 910 Weights: 1.37 Activations: 0.383 | NUCLEO-G474RE
Quantized _ _ 371.7
Pruned NN Library STM32:32 | | iprary: 13 SR5E1-EVBE3000D
on ST Edge Library Stellar-E: 30 167.9
Al Dev Cloud




Case 2
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Number of | MACC | FLASH RAM Execution Time
Parameters (KiB) (KiB) (us)
Fp32 Tiny NN | 1400 1620 Weights: 5.68 Activations: 0.199 | NUCLEO-G474RE
_ 207.4
Library STM32:15 | | iprary: 6 SR5E1-EVBE3000D
Library Stellar-E: 16 92.8
HPO Model 340 470 Weights: 1.33 Activations: NUCLEO-G474RE
_ _ 0.105 127.6
Library Stellar-E: 16 | Library: 6 61.2
Pruned Model | 600 760 Weights: 2.26 Activations: 0.145 | NUCLEO-G474RE
_ 215.2
Library STM32:20 | | iprary: 10 SR5E1-EVBE3000D
Library Stellar-E: 20 96.20
8 bits 600 640 Weights: 1.07 Activations: 0.360 | NUCLEO-G474RE
Quantized _ _ 361.4
Pruned NN Library STM32: 32 | | iprary: 13 SR5E1-EVBE3000D
on ST Edge Library Stellar-E: 32 112.1
Al Dev Cloud




Future Work




Future Works

Extend Al approach.
Stu dy Ti nyN N HW *@ Ot saing 0]

. n Reference Speed - ‘ » :
acceleration. E.g. at @ ? T e - - -
100KHz to close the | S = i T e
control loop in 10ps. —

e

L
Unified Tiny NN Inverse Park Translorm

Park Transform]

Tests on the field with real A T o e

Park p

PMSM motors. y "

q
cosd
2

Position and speed estimator

Introduce  new  case i, = -
Stu d I e S . _@ Lo | MVl Speed_meas_PU

Pos_PU

Calculate posttion and speed

Explore quantization. S

Open_Loop_Controll

Cosine 6e Pos_PU_Out Pos_PU

&7 i
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