
0

October 13.11.2024 | Online

The Software Factory Approach:
Model-Based Design for Safety-Critical Application

Sambit Mohapatra

Specialist

TBU | Model Based Design

1

• Introduction

• Tata Elxsi – Challenges with Traditional MBD Workflow

• Software Factory Approach in MBD

• Workflow – MBD Process on CI/CD

• Outcomes

• Future Scopes

Agenda

2

Adoption of Model Based Design in Tata Elxsi

Scopes:

• Software development
• Verification and Validation for various components

3

Equivalence
testing

Safety Critical Process

Software textual
requirements

Software
architecture

Executable
specification

Model used for
production

code generation

Generated
C/C++ code

Integrated
object code

System
requirements

Architecture
Development

Requirements
Authoring

Modeling

…

Code Generation Compilation
and Linking

Module and integration
testing / traceability

Review
and static
analysis

Back-to-back testing

Static code analysis
and verificationRequirements

traceability

Integration testing
Embedded software testing

Simulink Requirements System Composer Simulink, Stateflow, Fixed-Point Designer Embedded Coder Third-party tool

MISRA checking
Run-time error detection

Polyspace products

Modeling standards checking, Design error detection

Simulink Check, Simulink Design Verifier

Simulink Design Verifier

Property proving

Simulink Requirements

Requirements linking

Model vs. code coverage comparison

Simulink Test, Simulink Coverage

SIL test

Embedded Coder, Simulink TestSimulation / MIL / coverage analysis

Simulink Test, Simulink Coverage

KK0

Slide 4

KK0 1. Requirement may change within one set of code release.
2. Multiple unit models that is going updating day to day depends upon the client's requirement.
3. Since models involved, assigning of the activities like model development, unit testing and other activities will
involve multiple engineers that can create challenges in terms of dependent activities. Ex: any signals are coming
from model A and it is testing at model B. Let us say model A testing is not done properly (range specific things
missed out/ boundary condition) Model B testing is of no use though it is tested very properly inlined to the
functional requirements.
3. Here it involved more time with a less efficient process.
4. More manual communication, ticket creation headache, assignee unavailability, moreover it is a challenge to
operational aspect of the project.
Kavita Kumari, 2024-09-27T12:10:01.766

4

Tata Elxsi – Challenges with Traditional MBD Workflow

Reports gatheringTeam communication Ignorance of activity

Difficulty in defects handling

5

?

What is the Solution?

SOFTWARE FACTORY
APPROACH

6

What is Software Factory?

 An organized, structured and systematic approach

 Continuous Integration

 Continuous Delivery

Process Flow

Pre-Deploy
Check

7

Software Factory Approach

Gerrit

 Saving time by parallel execution in CI.

 Avoid manual efforts and easy to collect all artifacts in Jenkins workspace.

 Able to handle run testing for 1000 number of models and populate the

results.

 Due to auto assignments and operational communication, at integration level

bugs can be identified and fixed earlier.

 Since auto trigger mechanism during any fail cases on V & V phase it will

trigger and generate report. As result software will be defect free.

8

Workflow – MBD Process on CI/CD

Development

Report Publish

Artifacts
Repository

Trigger CI/CD
Push &
Commit

Notification

Review issues and reproduce locally

 Automation

 Validation and Verification

 Traceability

 Collaboration

Version Control System CI/CD Pipeline
Quick Analysis

9

 Interface MATLAB with Gerrit

Software Interface

 Interface Gerrit with Jenkins

Create a new project and add files to Gerrit

Commit your changes and push files to Gerrit

Create a new
project

Configure
Source Code
Management

Set Up Gerrit
Integration

Configure
Jenkins
Pipeline

Set Up Build
Triggers

Pipeline
Stage View

Plugin

10

Process Advisor

 Plugins: Run MATLAB command, Run MATLAB test and

Run MATLAB build

How do I define and deploy an MBD workflow?

Prequalify locally to reduce build failure

Reproduce & debug build failures
Commit to
Repository

Static Model
Analysis

Automate MIL
Testing

Automate Build
and Code

Generation

Automate SIL
Testing

Equivalence
Test

Static Code
Analysis

Generate
Reports

Monitoring and
Feedback

Project Files

11

Generate
Reports

Static Code
Analysis

Code
Generation

Run Test Static Model
Analysis

Simulation
Check

CI/CD Automation Process Flow

Simple Setup
• Prebuilt MBD Pipeline
• Built in MBD Tools Support

Desktop Integration with Process
Advisor App
• Local Prequalification
• Local Debugging

3rd Party CI Integration
• Jenkins/ Gitlab/ Devps
• Optimise MBD Build
• CI Result Integration

12

Video: CI Process Flow

13

Outcomes

Key Benefits

Faster Delivery

Time Saving

Cost Saving

Higher Quality

Parallel
Execution

Bugs Free

14

 Tool Integration: Continuously integrate and update CI/CD
tools for improved functionality and efficiency.

 Pipeline Optimization: Regularly optimize CI/CD pipelines to
handle increasing complexity and scale.

 Customize Process Advisor as per the requirements.

 Collaborative refinement with the MathWorks team.

Future Scopes

15

Share the EXPO experience
#MATLABEXPO

THANK YOU

