
0

Automating Fault Detection 

Using Visual Inspection
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Siemens Develops Health Monitoring System for Distribution Transformers

Results

▪ Retrofittable solution with non-invasive temperature sensors

▪ User-friendly commissioning

▪ Online learning for algorithm

User Story

https://uk.mathworks.com/company/user_stories/case-studies/siemens-develops-health-monitoring-system-for-distribution-transformers.html?s_tid=srchtitle_customer_stories_14_predictive%20maintenance
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Results

▪ Development time cut in half

▪ 90%+ prediction accuracy achieved

▪ Aggressive deadline met

Korea Institute of Energy Research Develops AI-Based Predictive 

Maintenance Models for Offshore Wind Power

User Story

https://uk.mathworks.com/company/user_stories/korea-institute-of-energy-research-develops-ai-based-predictive-maintenance-models-for-offshore-wind-power.html?s_tid=srchtitle_customer_stories_13_predictive%20maintenance
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Results

▪ More than 50,000 euros saved 
per year

▪ Prototype completed in six 
months

▪ Production software run 24/7

Mondi Implements Statistics-Based Health Monitoring and Predictive 

Maintenance for Manufacturing Processes with Machine Learning

User Story

https://uk.mathworks.com/company/user_stories/korea-institute-of-energy-research-develops-ai-based-predictive-maintenance-models-for-offshore-wind-power.html?s_tid=srchtitle_customer_stories_13_predictive%20maintenance
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How best to do maintenance?

▪ Reactive – Do maintenance once there’s a 

problem

– Problem: unexpected failures can be expensive and 

potentially dangerous

▪ Scheduled – Do maintenance at a regular rate

– Problem: unnecessary maintenance can be wasteful; 

may not eliminate all failures

▪ Predictive – Forecast when problems will arise

– Problem: difficult to make accurate forecasts for 

complex equipment
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Why perform predictive maintenance?

▪ Prevent loss or damage of expensive 

equipment

▪ Failures can be dangerous

▪ Maintenance also costly and possibly 

dangerous

▪ Reduced downtime

▪ Improved operating efficiency
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What is visual inspection?

“Automated visual inspection is the image-based inspection 

of parts or equipment where a camera scans the device under 

test for both failures and quality defects"

Computer Vision Optical Inspection

Automated Inspection

Automated Defect Detection

Image Processing Machine Learning
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Classical image processing
Detecting defective pills for quality control

Documentation example

Normal Dirty Chipped

https://uk.mathworks.com/help/vision/ug/detect-image-anomalies-using-explainable-one-class-classification-neural-network.html
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Classical image processing
Detecting defective pills for quality control



9

Classical image processing
Detecting defective pills for quality control
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Deep learning
Detecting defective pills for quality control

Explainable Deep One-Class Classification, Liznerski et. al (2021)

https://arxiv.org/pdf/2007.01760
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Challenge: Poor quality input data

Are conditions under which the data is gathered controlled?
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Challenge: Difficulty identifying anomalous inputs

Concrete Crack Images for Classification

DOI:10.17632/5y9wdsg2zt.2
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Challenge: Automation
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Challenge: Scale
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Case study – Visual inspection for wind turbines
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Can we identify damaged areas on wind turbine blades?

Damaged Turbine Blade
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Visual inspection of wind turbine blades
Our dataset
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Identifying blade damage
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Importing Data Crop to Blade Detect Damaged 

Area

Problem Outline



20

Image read

Importing the data

Scaling this up?
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Importing Data Crop to Blade Detect Damaged 

Area

Problem Outline
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Cropping out the background

im2gray

histeq

bwareafilt

regionprops
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Importing Data Crop to Blade Detect Damaged 

Area

Problem Outline
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Detecting damage

histeq entropyfilt prctile bwconvhull 
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Importing Data Crop to Blade Detect Damaged 

Area

Problem Outline

Validation?
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Image Batch Processor
More about the image batch processor

https://uk.mathworks.com/help/images/ref/imagebatchprocessor-app.html


2727

▪ Compute overlap between computed bounding box and ground truth

▪ Map detected damage convex hull back to original image co-ordinates and 

compute overlap with ground truth

▪ This requires labeling to obtain a ground truth

Validation
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Image Labeler
More about the image labeler

https://uk.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html
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Read Data Crop to Blade Detect Damaged 

Area

Problem Outline Can we do better using 

deep learning?
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Deep learning workflow

ACCESS AND EXPLORE 

DATA

DEVELOP AND VALIDATE 

MODEL

LABEL AND PREPROCESS 

DATA
DEPLOY

▪ Designing the architecture

▪ Training and validating the model

▪ Tuning training options

Neural Network = Model
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Transfer learning
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Architecture Data 

Augmentation
Train & Evaluate

Solving the cropping sub-problem
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Architecture

Convolutional Neural Networks

Classification
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Architecture

Deep Autoencoder

Anomaly Detection

Convolutional Neural Networks
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Architecture

Image Segmentation

Convolutional Neural Networks

Semantic Segmentation Network

Deep Autoencoder
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Architecture

Deep Autoencoder

Denoising, Synthetic data generation

Convolutional Neural Networks
Semantic Segmentation Network

Generative Adversarial Network (GAN)
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Architecture

Deep Autoencoder

Object Detection

Convolutional Neural Networks

YOLO – You Only Look Once

Semantic Segmentation Network

Generative Adversarial Network (GAN)
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Architecture Data 

Augmentation
Train & Evaluate

Solving the cropping sub-problem
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Image read

Importing the data

Scaling this up?



40

Image read

Importing the data and data augmentation

Datastores

Hard Drive

Datastore
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Data Augmentation

jitterColorHSV randomAffine2d

+ imwarp

padarrayimresize
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Architecture Data 

Augmentation
Train & Evaluate

Solving the cropping sub-problem
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Training and evaluation
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Training and evaluation
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Take-Home Messages
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Importing Data Crop to Blade Detect Damaged 

Area

Control your data gathering environment

Crop to Blade
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Classical image processing and deep learning can be complementary

Classical Image Processing Deep Learning

Data Requirements Low High

Data Labelling Not required
Algorithm / workflow dependent

Time consuming

Algorithm Development Potentially complex Learnt from data

Anomalies
Must account for manually

Likely to be missed once deployed

Learnt from data
Depends on algorithm

Explainability Complete
Low by default

Tools exist to improve

Execution Speed High
Slow

Specialized hardware can improve
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Onramps - Learn the basics in 2 hours or less
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Training Course: Predictive Maintenance with MATLAB

Topics included in this 2-day course:

▪ Importing and organizing data

▪ Creating custom visualizations

▪ Fault Detection/Classification

▪ Preprocessing to improve data quality, and 

extract time and frequency domain features

▪ Estimating Remaining Useful Life (RUL)

▪ Interactive workflows with apps

See detailed course outline

https://www.mathworks.com/training-schedule/predictive-maintenance-with-matlab
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Customized 

Engagements
We’ll work with you on a 

customized project plan 

aligned to your business goals. 

Transparent 

Approach
You will have full access to all 

our work throughout your project. 

Your self-sufficiency is our goal.

Return on 

Investment
Reduce development time and 

cost, learn faster, and improve 

quality and collaboration. 

Our expert consultants can help you with the entire predictive maintenance workflow: 

Data Preprocessing, Exploratory Analysis, Predictive Modeling, and Operational Deployment

Achieve Results Faster with Predictive Maintenance Consulting 

Request a free consultation: www.mathworks.com/pmp 

http://www.mathworks.com/pmp
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