Hitachi Energy

Linearization of Power Electronics in Power System

Xing Huang, Hitachi Energy

Linearization of Power Electronics in Power System

MATLAB EXPO China 2022

June 22, 2022

2022-06-22 - Document ID:8DAB002431 - Rev: A

© 2022 Hitachi Energy. All rights reserved.

Content

About Hitachi Energy Research	01
Stability Issues for Future Power Systems	02
Small Signal Modeling for Complex PE System	03
Stability Analysis and Optimization of Complex PE Sy	stem <mark>04</mark>
Team Members & Thanks Note	05

01_About Hitachi Energy (Go Live in China since March 30, 2022)

© 2022 Hitachi Energy. All rights reserved.

One Global R&D Organization

Our R&D team is present in 20+ countries and we have Research Centers in seven countries

Past ... The conventional utility grid

Future ... The carbon-neutral future is electric

Power Electronics a niche application

Power Electronics across the total Power Grid

Technology Trends: Power Electronics coupled with Digital enables electricity to be the backbone of the carbon-neutral future

Stability Problems

- Power Oscillation^[1]
 - between converters
 - between converters and utility
- Sub-synchronous Oscillation
 - Between PV/Wind converters and utility [2]
- Power System Accident
 - Xinjiang, China, 2015^[3]
 - Texas, USA, 2019^[4]
 - Hubei, China, 2011 [5]

Stability Analysis Methods

- Modal Analysis (模态分析法,特征值分析法)
 - Eigenvalue locus (根轨迹)
 - Participation factor method (参与因子法)
 - Sensitivity analysis (灵敏度)
- Impedance Analysis (阻抗分析)
 - Passivity analysis (无源性分析)
 - Nyquist stability criterion (奈奎斯特稳定判据)
- Phase Amplitude Analysis (幅相动力学)
-

Small signal model is required for stability analysis in different methods

Synchronous Reference Frame based Impediance Model and Stability Criterion for Grid-connected Renewable Energy Generation Systems, LUI Huakun, etc., Proceedings of the CSEE, 2017.
 Sub-synchronous resonance miligation for series compensated DFG-based wind farm by using buo degree of freedom control strategy[1]. Huang P1, etc., IEEE Transactions on Power Systems, 2015, 30(3): 1442-1454.
 Mechanism and characteristics of subsynchronous colliation caused by the interaction between full converter wind turbines and AC systems, JUI. Huakan, etc., Proceedings of the CSEE, 2016, 3 6 (9): 2 3 6 6 G 2 3 7 2 .
 Mechanism and characteristics of subsynchronous control interaction, USC) study of wind farms [J]. IEEETransachPowerSystems, 2 0 1 6, 3 1 (5): 3 0 4 G 3 9 1 2 .
 Interaction of SSR in macriatal DFG-based wind farms connected to a series compensated power Systems, 2 0 1 5, 3 0 (5): 2 7 7 2 6 2 7 7 9 .

Design and Analysis in MATLAB Platform

MATLAB is a general simulation platform for multiple purpose

Internal Library Blocks

- Accumulate & Inherit
- Add customized library into Library Browser
- Very Convenient for sharing and reuse

Model Reference

- Very Convenient for Parallel Design and Unit Test
- Code generation can accelerate model simulation
- Incremental loading speeds up model load times

Two ways used for efficient modeling: Internal Library and Model Reference

Comparison Among Multiple Linearization Methods

	Transfer Function	Model Linearizer APP	Frequency Response Estimation
Modeling Time	Long	Short	Short
Simulation Speed	Fast	Fast	Slow
Time Domain Analysis	Yes	Yes	Yes
Frequency Domain Analysis	Yes	Yes	Yes
Recommended Application Area	Simple model	In most cases and for complex model	Simulink model contains discontinuities or non- periodic event-based dynamics

Recommend to use Linearization Tool in professional software for complex PE system

Code for Small Signal Analysis

Simulink Model

Model Linearizer APP

Re-use the MALTAB/Simulink model to save the model development time

Accuracy Verified in Multiple Models

- Single Converter
 - PLL
 - PR, PI
 - Current Loop (PI)
 - Current Loop (PI) + Time Delay
- Converters Parallel
 - Two Converters
 - Ten Converters

Accuracy Verification Examples

• Case1: Single grid connected converter with current control loop

Case2: Two grid connected converters parallel at AC side

Case 1: Single Converter with Current Control Loop

	1	2	3	4	5	6	7	8	9	10
I	0	0	314.1593	0	0	0.0844	0	94.2478	0	-0.0844
2	0	0	0	0	0	0	0	0	-0.3000	0
	0	0	0	0	0	0.7608	0	850	0	-0.7608
	0	0	0	0	0	0	0	0	0	-0.3000
	-1.0384e-07	3.9477e+04	8.2243	-3.9329e-07	-35.8974	314.1615	2.2475e-08	2.4673	-11.8431	-314.1615
5	7.8452e-09	-5.0950e-10	-4.4968e-04	3.9477e+04	-314.1593	-35.8974	-5.0950e-10	-1.3490e-04	314.1593	-11.8431
,	0	0	-0.0069	0	1.2028e+04	-1.8631e-06	0	314.1572	-1.2028e+04	1.8631e-06
3	0	0	-314.8546	0	0	1.2028e+04	-314.1593	-94.4564	0	-1.2028e+04
,	313.4641	0	-20.8846	0	4.2205	-0.0056	4.7155e+03	-6.2654	-4.2205	314.1649
0	4 70500 102	0	242 4544							
U	4.70308+05	0	-313.4641	0	0	4.1364	0	4.6214e+03	-314.1593	-4.1364
0	sys_A ×	0	-313.4641	0	0	4.1364	C	4.6214e+03	-314.1593	-4.1364
	sys_A ×	e	-313.4641	0	0	4.1364	C	4.6214e+03	-314.1593	-4.1364
	sys_A ×	e 2	-313.4641	4	5	6	7	4.6214e+03	-314.1593	-4.1364
1	sys_A × 10x10 doubl	e 2 314.1593	-313.4641 3	4	5 0	6 0.0844	7 0	8 94.2478	9 0	-4.1364 10 -0.0844
1 2	sys_A × 10x10 doubl 1 0 0 0	e 2 314.1593 0	-313.4641 3 0 0	4	5 0	4.1364 6 0.0844 0.7608	7 0 0	8 94.2478 850	9 0 0	-4.1364 10 -0.0844 -0.7608
1 2 3	sys_A × 10x10 doubl 1 0 0 0 0	e 2 314.1593 0 0	-313.4641 3 0 0 0	4	5 0 0	6 0.0844 0.7608 0	7 0 0 0 0	8 94.2478 850 0	-314.1593 9 0 -0.3000	-4.1364 10 -0.0844 -0.7608 0
1 2 3 4	10x10 doubl	e 2 314.1593 0 0 0	-313.4641 3 0 0 0 0 0	4	5 0 0 0 0	6 0.0844 0.7608 0 0	7 0 0 0 0 0	8 94.2478 850 0 0	-314.1593 9 0 -0.3000 0	-4.1364 10 -0.0844 -0.7608 0 -0.3000
1 2 3 4 5	sys_A × 10x10 doubl 1 0 0 0 0 0 0 0 0 0 0 0 0 0	e 2 314.1593 0 0 0 0 8.2243	-313.4641 3 0 0 0 0 3.9477e+04	4 0 0 0 0 0 0	5 0 0 0 0 -35.8974	6 0.0844 0.7608 0 0 314.1615	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 94.2478 850 0 0 2.4673	9 0 0 -0.3000 0 -11.8431	-4.1364 10 -0.0844 -0.7608 0 -0.3000 -314.1615
123456	4,70302+05 sys_A × 10x10 doubl 1 0 0 0 0 0 0 0 0 0 0 0 0 0	e 2 314.1593 0 0 0 8.2243 -4.4968e-04	-313.4641 3 0 0 0 0 3.9477e+04 0	4 0 0 0 0 0 3.9477e+04	5 0 0 0 -35.8974 -314.1593	6 0.0844 0.7608 0 0 314.1615 -35.8974	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 94.2478 850 0 2.4673 -1.3490e-04	-314.1593 9 0 -0.3000 0 -11.8431 314.1593	-4.1364 10 -0.0844 -0.7608 0 -0.3000 -314.1615 -11.8431
1 2 3 4 5 6 7	4,70302+03 sys_A × 10x10 doubl 1 0 0 0 0 0 0 0 0 0 0 0 0 0	e 2 314.1593 0 0 0 0 8.2243 -4.4968e-04 -0.0069	-313.4641 3 0 0 0 3.9477e+04 0 0 0	4 0 0 0 0 3.9477e+04 0	5 0 0 -35.8974 -314.1593 1.2028e+04	4.1364 6 0.0844 0.7608 0 314.1615 -35.8974 -1.8631e-06	7 0 0 0 0 0 0 0 0	8 94.2478 850 0 2.4673 1.3490e-04 314.1572	9 0 0 -0.3000 -11.8431 314.1593 -1.2028e+04	-4.1364 10 -0.0844 -0.7608 0 -0.3000 -314.1615 -11.8431 1.8631e-06
1 2 3 4 5 6 7 8	4,70502+05 sys_A × 10x10 doubl 1 0 0 0 0 0 0 0 0 0 0 0 0 0	e 2 314.1593 0 0 0 8.2243 -4.4968e-04 -0.0069 -314.8546	-313.4641 3 0 0 0 0 3.9477e+04 0 0 0 0 0	4 0 0 0 0 0 3.9477e+04 0 0	5 0 0 0 -35.8974 -314.1593 1.2028e+04 0	4.1364 6 0.0844 0.7608 0 314.1615 -35.8974 -1.8631e-06 1.2028e+04	7 0 0 0 0 0 0 -314.1593	8 94.2478 850 0 0 2.4673 1.3490e-04 314.1572 -94.4564	9 0 0 -0.3000 0 -11.8431 314.1593 -1.2028e+04 0	-4.1364 10 -0.0844 -0.7608 0 -0.3000 -314.1615 -11.8431 1.8631e-06 -1.2028e+04
123456789	4.70302+03 sys_A × 10x10 doubl 1 0 0 0 0 0 0 0 0 0 0 0 0 0	e 2 314.1593 0 0 8.2243 -4.4968e-04 -0.0069 -314.8546 -20.8846	-313.4641 3 0 0 0 0 3.9477e+04 0 0 0 0 0 0 0	4 0 0 0 0 0 3.9477e+04 0 0 0 0	5 0 0 -35.8974 -314.1593 1.2028e+04 0 0 4.2205	4.1364 6 0.0844 0.7608 0 0 314.1615 -35.8974 -1.8631e-06 1.2028e+04 -0.0056	7 0 0 0 0 0 0 -314,1593 4.7155e+03	8 94.2478 850 0 2.4673 -1.3490e-04 314.1572 -94.4564 -6.2654	-314.1593 9 0 -0.3000 0 -11.8431 314.1593 -1.2028e+04 0 -4.2205	-4.1364 10 -0.0844 -0.7608 0 -0.3000 -314.1615 -11.8431 1.8631e-06 -1.2028e+04 314.1649

The state-space matrices exported by MATLAB is verified by using theoretical derivation

Case2: Two Grid Connected Converters Parallel at AC side

Stable step-response

Public

14

- Two converter parallel
- A step of 5% applied to active power reference of the 1st converter
- Alignment between time-domain simulation and linearization model

Non-stable step-response

- Two converter parallel
- A step of 50x gain in PLL is applied to both converters
- Same unstable frequency in both time-domain simulation and linearization model

Linearization/MATLAB is accurate enough for stability analysis

© 2022 Hitachi Energy. All rights reserved.

@Hitachi Energy

From Linearization

Control Design Workflow

Trim and linearize

LINEAR ANALYSIS EXACT LINEARIZATION					FREQUENCY RESPONSE ESTIMATION TRIM MODE			IODEL	el 🛛 🖓 – 🖬 🖬 🚍				
Specifications	Optimization Options	Tom.	Close Tab					_					
1877	14/55	TRM	CLOSE		Constant and the second								
Canada Browner					Specifications	Specifications for trim							
	sporte variation				states input	Soutputs							
MATLAB Workspace			State Value	Value	here an	State Specifica	itions						
Name -	Value	Value			me/Alternat	+ Dunamics /60	Known	Steady State	e Minimum Maximum				
Aail	[-10.5	597		*	State - 1	0	or (Quaternion	V Carculate DCM &	Jof	Inf			
Aelv	[-10.9	951			State - 2	01303	10	121	lof	Inf			
Bail	[-9.2]	530			State - 3	0	12		-Inf	Inf			
	[Lerris	0.000			JandControl/DeHavilland Beaver Airframe/Aircraft Dynamics/6DoF (Quaternion)/p.g.r								
 Linear An 	alysis Worksp	ace			State - 1	0	1		-Inf	Inf			
Name -	Val	ue			State - 2	0	2	2	-Inf	Inf			
D snapshot	5_sec <1)	1 op			State - 3	0	1	12 I	-Inf	Inf			
trim poin	<1>	1 op			Control/De	Control/DeHavilland Beaver Airframe/Aircraft Dynamics/6DoF (Quaternion)/ub,vb,wb							
			State - 1	44.54	E1	V	-Inf	Inf					
					State - 2	2.714	873	2	-Inf	Inf			
 Variable F 	review				State - 3	5.836	123	2	-Inf	Inf			
Trimmed ope:	ating point	for			dControl/DeHavilland Beaver Airframe/Aircraft Dynamics/6DoF (Quaternion)/xe,ye,ze								
dehavilland	lontrol				State - 1	-8500	100	871	-Inf	Inf			
specification	ins were such	cessful	ly met		State - 2	0	10	2	-Inf	Inf			
15 states as	id 4 inputs				State - 3	-2202	1	2	-Inf	Inf			
				Ind Gust Model/Distance into gust (x)/Distance into Gust (x) (Limited to gust length d									
					State - 1	0		100	0	120			
				nd Gust Model/Distance into gust (y)/Distance into Gust (x) (Limited to gust length d)									
							Income Initial Malance						

MIMO System Control Optimization: Control System Tuner APP

Nonlinear System Control Optimization with Uncertain Parameters: Design Optimization APP

Design and Optimize controller

Hitachi Energy

Public 15 © 2022 Hitachi Energy. All rights reserved.

Sensitivity Analysis

- Determine the most influential parameters in the model and see how design variables affect cost function using visual and quantitative analysis
- Use Design of Experiments and Monte Carlo simulations to evaluate cost functions across the design space
- Calculate sensitivities, perform correlation analysis, and visual analysis of cost function against model parameters
- · Identify good initial starting points for optimization process

Sensitivity Analysis in MATLAB is a Monte Carlo technique that simulates a model repeatedly under different parameter values

Public 16 © 2022 Hitachi Energy. All rights reserved.

- · Based on MATLAB, which is a General Simulation Platform
- Accurate enough for stability analysis
- Save Modeling Time
 - a) Re-use the MALTAB/Simulink Model
- Save Simulation Time

.

- a) Faster than time domain simulation for sensitivity study with dozens of cases
- Support stability analysis of complex PE system
 - a) Generate small-signal model of complex PE system
 - b) further stability analysis, based on modern control theory

Linearization/MATLAB is recommended for stability analysis of complex PE system

05_Team Members

Xing Huang

- Dr. Xing Huang
- Presenter's biography

- Senior Scientist at Hitachi Energy Research, focusing on the power electronics application in power system, especially topics on power converter topologies, control and analysis.
- Ph.D. at Beijing Jiaotong University, focusing on new energy, especially topics on grid-connected/islanding characteristics and control strategies of Microgrid, IGCT drive, PV power generation, BESS, etc.
- IEEE member, ICEE 2014 Best Paper Award Winner
- Email
 - Helen-xing.huang@hitachienergy.com

Weichi Zhang

- Dr. Weichi Zhang
- Biography

- Senior Scientist at Hitachi Energy Research, focusing on the renewable energy and low-carbon solutions for power transmission and distribution encompassing power converter topologies and control and analysis.
- Ph.D. and Pos-doc Researcher at Newcastle University focusing on the power quality improvement of gridconnected converters and utilization of wide-band gap semiconductors.
- IEEE member, IET member
- Email
 - Weichi.zhang@hitachienergy.com

Wen Jiang

- Wen Jiang
- Biography

- Scientist at Hitachi Energy Research, focusing on control, modeling and analysis of power converters in renewable energy, power transmission and distribution.
- M.S. degree in electrical engineering from North China Electric Power University, focusing on control and stability analysis of HVDC transmission system
- Email
 - wene-wen.jiang@hitachienergy.com

Technical Support

Application Engineer

• Jing Wu

• Amy Yang

Sales Team

• DuanWei Wang

• Fiona Peng

OHITACHI Energy

HITACHI Inspire the Next

10 converters in each cluster

Hitachi Energy

Public 22 © 2022 Hitachi Energy. All rights reserved.

MIMO System Control Optimization

Nonlinear System Control Optimization with Uncertain Parameters

Simulation Time

- Step response waveform
 - Step change at 0.6s
 - Total simulation time 1s

Accuracy

• Step response of PQ measurement of Converter 1

Linearization/MATLAB can help to save simulation time during sensitivity study (with dozens of cases)

General Simulation Platform

Code for Small Signal Analysis

Matrix A:↩

	1	2	3	4	5	6	7	8	9	10
1	0	0	314.1593	0	0	0.0844	0	94.2478	0	-0.0844
2	0	0	0	0	0	0	0	0	-0.3000	0
3	0	0	0	0	0	0.7608	0	850	0	-0.7608
4	0	0	0	0	0	0	0	0	0	-0.3000
5	4.4390e-07	3.9477e+04	0.9000	-8.5528e-08	-35.8974	314.1489	-3.8299e-07	0.2700	-11.8431	-204.0458
6	-3.5746e-08	2.7960e-08	-109.8464	3.9477e+04	-314.1487	-35.9269	2.7960e-08	-32.9539	204.0455	-11.8136
7	0	0	-0.0461	0	1.2028e+04	-1.2366e-05	0	314.1349	-1.2028e+04	1.2366e-05
8	0	0	-314.8671	0	0	1.2028e+04	-314.1487	-94.4601	0	-1.2028e+04
9	313.4686	0	-20.8782	0	4.2205	-0.0056	4.7155e+03	-6.2635	-4.2205	314.1543
10	4.7050e+03	0	-313.4897	0	0	4.1363	0	4.6214e+03	-314.1487	-4.1363

- Re-use the MALTAB/Simulink Model

- Save Modeling Time

More Details

OHITACHI Energy

Public 26 © 2022 Hitachi Energy. All rights reserved.

HITACHI Inspire the Next