Design and implementation of a digital wireless system(compliant to IEEE802.15.4) with channel emulation capability using Matlab Simulink and Zync SoC-SDR Platform

Bibin Varghese Dr S Sreelal VSSC Trivandrum

MATLAB EXPO 2019, Hyderabad

VSSC TVPM

Outline

Introduction

- Existing Wireless Instrumentation System(WIS) and the motivation to emulate the same using Model based SDR techniques
- □ Model based design flow with Matlab simulink
- □Addressing SoC design challenges with Matlab
- □Simulink Modeling of IEEE802.15.4 Transmitter & Receiver
- Experimental Test bed and Results
- Benefits of model based SDR development & Future Scope

Introduction

- The testing, verification and evaluation of indoor wireless systems is an important but challenging endeavor.
- The most realistic method to test the wireless system is a field deployment. Unfortunately, this is not only expensive but also time consuming.
- Real-time hardware in the loop RF channel emulation fills the gap left between simulation and field testing.
- In this work, we present the design and implementation of a programmable digital wireless system(Tx-Rx pair) with channel emulation capability, which connects directly to our DUT radio , and mimics the wireless channel as well as other impairments between them, in real-time using Matlab simulink & Zync-SDR platform.
- We describe a fast and accurate way of development and deployment of the entire system using model based design running on SDR.

Motivation - Existing Wireless Instrumentation System (WIS)

•PHY of WIS is compliant to IEEE802.15.4. It cannot be used as such for robust communications in aerospace applications where the multi-path effects are more.

•COTS radio transceivers were used for the realization of WIS which doesn't give access to the PHY layer for any channel error mitigation.

•System robustness in presence of multi-path fading is enhanced by providing three types of diversity techniques(Frequency, Spatial & Temporal) in the MAC layer.

•Assessing the performance of this entire system in presence of different channel impairments is a challenging as well as expensive task with traditional test systems.

Transmitter as well as the receiver built on SDR platform not only simplify the testing but also bring efficient solutions like channel equalization, melioration of PHY layer etc to address the root cause of the channel impairment.

The advances in platforms and tools will allow developers to quickly simulate and prototype such wireless applications while establishing and maintaining a deployable path to production too.

MATLAB EXPO 2019

IEEE802.15.4 PHY

PDU Format

isro

Typical Communication System Architecture

Using I/Q Modulator to Generate any RF Signal

Typical SDR System

isro

SDR Changes the way how we think on RF Systems!

Traditional RF SDR Prototyping Prototyping

Advantages

- ✓ Unprecedented application capabilities.
- ✓ Extremely modular solution.
- Allows adoption for different missions keeping required hardware changes minimal.
- ✓ SDR + FPGA/DSP→ allow
 implementing all changes in software, keeping hardware
 heritage intact.

Applications

- ✤Re-configurable radio for deep space, inter-planetary missions and ground test applications.
- Integrated telemetry and telecommand systems for Launch vehicle /satellite missions.
- Inter and Intra stage Wireless Telemetry for Launch vehicles

AD9361-Agile RF SDR Transceiver

FEATURES

- RF 2 × 2 transceiver with integrated
 12-bit DACs and ADCs
- TX band: 47 MHz to 6.0 GHz
- RX band: 70 MHz to 6.0 GHz
- Supports TDD and FDD operation
- Tunable channel bandwidth:
 <200khz to 56MHz
- User Programmable Filters in Transmitter and Receiver

MATLAB EXPO 2019

Vikram Sarabhai Space Centre, Trivandrum, India, 2019

Model Based Design Makes SDR development simple and fast

A single shared development environment

Validate performance

on chip

Verify operation before

committing to hardware

- A way to manage a complex system
- Common design platform for entire design team
- Reduces hardware testing time by shifting design from lab to desktop

Enables:

different levels of simulation

System architects can build prototypes with popular FPGA and SDR kits and hardware engineers can reuse those

models for production deployment.

system

Deploy design on target

Virtual representation of a real-world system

SDR Model Based Design Flow with Matlab Simulink

Addressing Challenges in SoC Design Using Matlab

Vikram Sarabhai Space Centre, Trivandrum, India, 2019

डसरा

isro

Matlab HDL Specific Techniques

MATLAB EXPO 2019

Transmitter and Receiver are partitioned to operate asynchronously.

The transmitter must be capable of producing IEEE802.15.4 packets and the receiver should demodulate and decode the same correctly

The user must be able to program various signal/channel impairments for desired tests

isro

Overall Simulink Model-IEEE802.15.4 TxRx

Vikram Sarabhai Space Centre, Trivandrum, India, 2019

Simulink Model for Channel Impairments

MATLAB EXPO 2019

Vikram Sarabhai Space Centre, Trivandrum, India, 2019

isro

इसर्ग

HDL compatible Simulink Model -Transmitter-Packetization & DSSS

HDL compatible Simulink Model –Coarse Frequency Compensation

MATLAB EXPO 2019

Vikram Sarabhai Space Centre, Trivandrum, India, 2019

डसर

isro

HDL compatible Simulink Model – Fine Frequency Compensation

Vikram Sarabhai Space Centre, Trivandrum, India, 2019

HDL compatible Simulink Model – Timing recovery

MATLAB EXPO 2019

HDL compatible Simulink Model – Preample Detection

HDL Code generation for IEEE802.15.4 Tx Model

Original Matlab Code of Transmitter

clc; close all; clear all; N = 1016; % Number of bits to process (size of the maximum packet)

x = randi([0 1],1,N);%Random number generator input=x; ppdu=frame(input);

%Bit-to-symbol mapping

for q=1:length(ppdu)/4 xsmb(q) = ppdu((q-1)*4+1) + ppdu((q-1)*4+2)*2 + ppdu((q-1)*4+3)*4 + ppdu((q-1)*4+4)*8;end

sps=4; chip_format=chip(xsmb); y=chip_format;

% modulation with Matlab comm object

oqpskmod = comm.OQPSKModulator('BitInput',true,'SamplesPerSymbol',sps,'PulseShape','Half sine','Sym waveform = oqpskmod(y');

Equivalent VHDL Code

Packetization/Bit2Symbol as hdlsrc\zigbee hdl tx model 18a hdl setup\Bit2Symbol.vhd. Packetization/Data Source as hdlsrc\zigbee hdl tx model 18a hdl setup\Data Source.vhd. Packetization/Symbol2Chip/Convert2bits as hdlsrc\zigbee hdl tx model 18a hdl setup\Convert2bits as hdlsrc\zi Packetization/Symbol2Chip/RotateRight as hdlsrc\zigbee hdl tx model 18a hdl setup\RotateR Packetization/Symbol2Chip as hdlsrc\zigbee hdl tx model 18a hdl setup\Symbol2Chip.vhd. Packetization/PacketizerFSM as hdlsrc\zigbee hdl tx model 18a hdl setup\PacketizerFSM.vho Packetization as hdlsrc\zigbee hdl tx model 18a hdl setup\Data Generation Packetization. system as hdlsrc\zigbee hdl tx model 18a hdl setup\Subsystem.vhd. idlsrc\zigbee hdl tx model 18a hdl setup\Pulse Shaping.vhd.

3K Modulator Baseband as hdlsrc\zigbee hdl tx model 18a hdl setup\QPSK Modulator Baseband hdlsrc\zigbee hdl tx model 18a hdl setup\Symbol Mapping.vhd.

r to who

31					_
32					
33	Module: HDLTx				
34	Source Path: zigbee_hdl_tx_model	HDLTx			
35	Hierarchy Level: 0				
36					
37					
38	LIBRARY IEEE;				
39	USE IEEE.std_logic_1164.ALL;				
40	USE IEEE.numeric_std.ALL;				
41	USE work.HDLTx_pkg.ALL;				
42					
43	ENTITY HDLTX IS				
44	PORT(clk	1	IN	<pre>std_logic;</pre>	
45	reset	1	IN	<pre>std_logic;</pre>	
46	clk_enable	1	IN	std_logic;	
47	ce_out	1	OUT	std_logic;	
48	QPSK_hs_Shaped_re	÷	OUT	<pre>std_logic_vector(3 DOWNTO 0); sfix4</pre>	
49	QPSK_hs_Shaped_im	÷	OUT	<pre>std_logic_vector(3 DOWNTO 0) sfix4</pre>	
50);				
51	END HDLTx;				
52					
53					
54	ARCHITECTURE rtl OF HDLTX IS				
55					

HDLTx double

Over The Air Transmission of IEEE 802.15.4 Packets in Radio I/O & Stand Alone modes

MATLAB EXPO 2019

Sro

Results

EVM Measurement

Coarse Frequency Estimation

12

14

18

20

PSD of the transmitted signal captured with VSA

Packets captured with TI's Smart RF EB05 kit

-0.2

-0.8

0

Benefits of model based SDR development

- ✓ A common model for different levels of the development
 - no duplication of effort, better collaboration
- ✓ Less chances of coding errors due to high level implementation
- ✓ Reduced verification effort.
- Easy signal analysis and performance measurement at different interfaces and levels of the design,
- \checkmark Reusability and scalability of the model with less effort.
- ✓ Resource sharing and pipelining are much easier as compared to bare VHDL coding.
- ✓ Optimized HDL code and small FPGA resource consumption suitable to deploy in the actual flight systems also.
- \checkmark A unified hardware platform for different communication applications.
- ✓ Fast prototyping of the concept buy just placing and interconnecting the subsystem models.

Speaker Details Email: <u>bibin_varghese@vssc.gov.in</u> <u>bibinvarghesep@gmail.com</u>

Linkedin: https://www.linkedin.com/in/bibin-varghese-480541b1/

MATLAB EXPO 2019

Vikram Sarabhai Space Centre, Trivandrum, India, 2019