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OECD: Organization for Economic Cooperation and Development

International Energy Outlook 2019
https://www.eia.gov/outlooks/ieo/pdf/ie02019.pdf
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Megatrend: Electrification of Everything
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Grid Modernization: New Grid Paradigm

Commercial & Residential
Industrial ’

- _ Supervisory
Utility Grid Controls

Microgrid

Generators Energy Storage
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Enabling Green Hydrogen

Green Hydrogen
Production



| _ MATLAB E
Design Challenges

Component Design Asset Digitalization

— electrolyzer — anomaly detection
— energy storage — lifetime estimation

— power converter unit — prognostics development
— generator

Plant Design High-Level Algorithmic Design
— concept evaluation — supervisory logic
— physical requirements — setpoint definition

— energy balance



Addressing Model Fidelity

MATLAEB
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Addressing Model Fidelity

Systems
- Add fidelity based on your needs

| — Model what you need
| | — Maintain architectural consistency

Software Physics

« Choose the right integration platform
@I — Interface with different tools

— Co-simulate

Components
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Electric Mobility: User Stories

Tesla Tells Us How It Keeps Beating Ather Enerqgy Develops Electric Two-
Nearly Everyone in the Range Game Wheeled Scooter and Charqging Stations



https://www.caranddriver.com/news/a34046953/tesla-range-strategy-details/
https://www.mathworks.com/company/user_stories/ather-energy-develops-electric-two-wheeled-scooter-and-charging-stations-using-model-based-design.html

MATLAB EXF

Tesla: System Optimization

= Alleviate customer range anxiety

= Need to get the maximum efficiency
from existing components

- How can we design components and
do architecture tradeoff without
building prototypes?

Tesla Tells Us How It Keeps Beating

Nearly Everyone in the Range Game



https://www.caranddriver.com/news/a34046953/tesla-range-strategy-details/

Ather Energy: BMS Design

Ather Enerqgy Develops Electric Two-

Wheeled Scooter and Charging Stations

MATLAE

How to explore promising ldeas
against constraints of time to market
and costs

Gain maximum from Automation?

How to gain the required competency
rapidly?
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Electric Vehicle: Building System Level Simulation Models
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PLANT_to_BMS
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Powertrain Blockset: Pre-built Reference Applications

Library of blocks

MATLAB EXF

Pre-built reference applications

®2 Library: autolib - Simulink - O ¥
File Edit View Display Diagram Analysis Help
HE = r.
Pel - 3 - HC M
autolib
@ s
= \
Energy Storage Drivetrain Propulsion

and Auxiliary Drive

O

Conventional Vehicle
Reference Application

The conventional vehicle reference
application represents a full vehicle
model with an internal combustion
engine, transmission, and

| i
» Transmission Vehicle Dynamics Vehicle Scenario Builder
W
Ready 150%

Electric Vehicle Reference
Application

The electric vehicle (EV) reference
application represents a full electric
vehicle model with a motor-
generator, battery, direct-drive

Hybrid Electric Vehicle
Multimode Reference
Application

The hybrid electric vehicle (HEV)
muliimode reference application
represents a full multimode HEV
mode! with an internal combustion

Engine Dynamometer

Cl Engine Dynamometer
Reference Application

The compression-ignition (C1)
engine dynamometer reference
application represents a Cl engine
plant and controller connected to a

A

Hybrid Electric Vehicle
Input Power-Split
Reference Application

The hybrid electric vehicle (HEW)
input power-split reference
application represents a full HEV
mode! with an internal combustion

Engine Dynamometer

le—

1
#

S| Engine Dynamometer
Reference Application

The spark-ignition (S1) engine
dynamometer reference application
represents a Sl engine plant and
controller connected o a

Hybrid Electric Vehicle P2
Reference Application

The hybrid electric vehicle (HEV) P2
reference application represents a
full HEV model with an internal
combustion engine, fransmission,

12



Simscape: Multi-Domain Physical Modelling Libraries

- 3
@ | & I O
Electrical Driveline Multibody Fluids
52 52 5 ¢ §¢

Simscape
§ ¢ § ¢

_ MATLAB & Simulink

MATLAB EXIPO
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What’s next in this session?

- Battery & Motor Modelling [T Sgss
— Cell to Module to Pack
— Thermal Analysis =
— Cooling Circuit Design ——
« EV Charger Design
— AC/DC Charging
— Power Electronics & Control

= Microgrid Simulations
— System Level Simulation
— Real-time Testing

alh
¥
=z
x

MATLAB
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Personal Mobility Solutions
Hybrids, Pure Electric, or Fuel Cells ?

...m... E ...Iil...
[E;@j@m e =Ye

Hybrids (HEV, PHEV) Pure Electric (BEV) Fuel Cells (FCEV)

+ Lower emissions than + Fewer components + Clean Energy source
ICE vehicle + Simpler Controls + Quick refill and longer

+ NoO range anxiety (compared to HEV) range

- Complex Controls - Cost - Cost

- Safety (Battery fires) - Safety (H2 tank)

15



Personal Mobility Solutions
Requirements Analysis

No Fire outside
and occupant
must have ~5
mins to exit the
vehicle cabin

Safe during
service and
handling

Lower the
Better, $/kWh

'Ride Quality

(motor torque
ripple, noise),
Power deliverable
(-30 to 50 degC)

Over 8 years of
Battery, Motor,
and Inverter
warranty

Single Charge
Range — higher
the better

DoD 70% at EOL

Charging Options
& Time — Fast
Charge capability

MATLAB EXIPO
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Battery & e-Motor Design
Key Design Questions

Impact of battery design on it's safety and performance

« What should be my cell balancing strategy ? How robust is my BMS design ?
« How do | reduce my overall battery pack cost ?

Impact of motor deS|gn In controls and performance (Rlde quallty, NVH)




Safety of HV Battery Packs

L

Is my battery safe from a thermal runaway perspective ?

MATLAB EXPPO

18
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Safety of HV Battery Packs

Thermal Safety
Increased q

Temperatur
in the Cell

ctrode.  ~ 150°C, Electrolyte-Anode
rolyte ~ 220°C, Cathode decomp.
cti ~ 250°C, Electrolyte decomp.

e Short Circuit
e Crash, crush
« Cooling failure

Incr@!&d_

Reactio
Rates

« Combustion
* Fire
19
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Example — Thermal Runaway

- Computationally expensive to model all reaction kinetics in a runaway
reaction

- Strategy — fit lumped reaction rates for electrode-electrolyte reaction based
on measured cell abuse test data (cell self-heating rates)

Cell Self Heating Rate

250

- Assume — all cell heat generation due to
anode-electrolyte reaction (initially)

2001 0

@
-

150

100

Rate of Temperature change, dT/dt
=

— e e E EEE s === -
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Temperature (K) 20




Example — Thermal Runaway
Simscape Component

(7] T

Plat Qnw

—mCp

1

W
mCp
| Heater Qo
Thk
Controls
HeaterPowerToCell

LIV

Tamipsralice

Calculate heat load due

Lol

fx) =0

Solver

Configuration

Ambient
T——s{ [T]
T

[ALP]

W
X

to cell abuse reactions

MATLAB EX

let

% Check if temperature 1limit for thermal runaway initation reached

% If reached, calculate cell abuse heat

triggerTcrossed = (T==triggerT); % © or 1 (Qabuse valid)

Qabuse = triggerTcrossed*mass*sp_heat*tablelookup(cell_Tvec, ...
cell _dTdt, T, interpolation=1inear,extrapolation=nearest);

% Check if all reactants in cell have been consumed

% If yes, no more abuse heat generation

% No burning or phase change of cell material considered

cellDead = (alpha==maxAlpha);

alphaRate = (unityDummy-cellDead)*(Qabuse/(rxnHeat*activeMass));

% Calculate extent of reaction and cell abuse heat

alphaRate == alpha.der;

Q + (unityDummy-cellDead)*Qabuse == frac * mass * sp_heat * T.der;
end

Energy Balance Equations

21
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Example — Thermal Runaway
Results — with/out Thermal Barrier
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The energy released during a thermal runaway in a module can be reduced by placing thermal barriers, at

the cost of spacing (and weight); this also favorably impacts the specs. for sealing design (pack enclosure).



Battery Pack Design for Performance

MATLAB EXPPO

How robust is my thermal management strategy ?
How do | model large battery packs ? How do | characterize a Li-ion cell ?

23
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Battery Pack Design
Cell Model

Simscape™ Electrical™ provides capable cell level modelling capabilities
Including cell aging and pre-parameterized cells

Equivalent-circuit-based cell models, upto 5RC pairs

wf o H e H e

R1 R2 R3

e2lta =
o po Battery
? (T&b'é‘B&SCd) Em

24



Battery Pack Design
Cell Characterization

cell data

Battery Modeling

version 1.27 (2.16 MB) by Javier Gazzarri

Lithium ion battery characterization, state estimation, cell balancing, and thermal managem
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MATLAB EXIPO
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Battery Pack Design

- Cell Fade — impact of charge-discharge
cycle on changes in OCV, cell ohmic
resistance, and capacity

« Semi empirical, tabulated, equations
 Included in battery pre-parameterized data

- Calendar aging — impact on ohmic
resistance
- Semi empirical, tabulated

S
Vo fade = 1‘[:(1 + lﬂ:;}h_f)

VR
i 161 i..' = FIERTT J. +_ ——
{neom fade o ( 100 1""1")

Rigge=Ri| 1 + —=1/=
|.t::|d|. | ( IDD -I;"'Ir)

adT.V,.)=(bV,. — c)e

MATLA

R = R[](l + Z al T Vo) (17 — 1, })

_gd
a T, V..) = (bV,. —c)e “.

= (_"“(] — Z a T, 'F,fm.}[';:l.- _ i"‘l_"_J ])
i=1
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Battery Pack Design
Simscape Workflows

sve o dady fo O P G B A,

1234587202

‘Module

Ve

{ - Cell type — pouch, prismatic, and cylindrical
- Multi-fidelity — detailed, grouped, and lumped
- Electrical & thermal response

CIOI

27



Battery Pack Design
Electrical & Thermal
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MATLA
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Battery Module Design
1. Open custom Battery Module library
2. Leam more about the Battery Module library

[
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Simscape Implementation
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Battery Pack Design Examples
Thermal Management

- Analyze cell-to-cell temperature gradient and devise thermal management

strategies, robust BMS

.

Fmal_uanageme'—.-
| ambient .—p—
|[coolantTermp b—w

Battery state
Pack input
DC

Ambient
Flot Data
Coolant_T

Ability to track different weak/strong cells in the entire pack and design robust strategies for managing

Battery Control

E—— : +
—w{data Current Qe | el || s !_ Current -
Fiwi & FlwT @ Source
Input Data Split o %ﬁﬂ j b=>a N
oo |ovo|erele A :
& g <_[pump] |
]
— fx)=0
N socmmar (]|
- <S0C (mindmax)=> > Solver

<T {mindma)=

temperature, electrical safety, and pack utilization from a range perspective.

Power
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Battery Pack Design Examples
Thermal Management for BEVs

Battery pack cooling strategy — single or separate cooling systems

Radiator

{ X

Condenser

o =
T WO S S I

cold waathar

bcoc

Q Heater . Evaporator E :]

T = ®

c

=i

Charger Motor Inverter

Measurements 30
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Motor Design for e-Mobility

What size e-motor is required to meet operational requirements?
How can | optimize the motor controller ?




Electric Motor Design

Motor Design
- Pole/slot design

3 . .
Q- Sizing, windings
fe)

c

W Performance
-

2 . Thermal

V)

O .

A Losses

S

©  Validate

=

-  Simulate with actual

waveforms, losses

Flux linkage & I

winding configuration

Steinmetz coefficients &
efficiency map

<

Current waveforms
and/or harmonics

—» Pl(z) | Feedback
l control
igd = g1(Te  n,Vac) Op. point
ire = g,(17 ,n,v,.) ~ management
G
U ﬁ ) Drive
S -
N-Channel electronics
Gate Driver IGBT

System simulation->
drive efficiency &
harmonics

MATLA

S|0J1U0D pue SwalsAs
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Motor

Electric Motor Design
w7 Geometry

Design to System Model

Export & pre-process in MATLAB
(partial derivatives etc)

- Import flux for 3-
phase PMSMs from FE S '{a
design tools like IMAG, “° Fluxese 1,

ANSYS-Maxwell, and . Data torque ) /c

Motor-CAD - | Motor & Drive FEM-Parameterized
M_?"‘Wl (System Level) PMSM
- Enables design and 5o 2 S
optimization of the e e e
complete e-drive . @R e e
SyStem (mO'[OF, power " invoke(mcad, 'SetVariable', 'PhaseAdvance',gammaVec(j));
electronics, and
controller)

A
o

invoke(mcad, 'DoMagneticCalculation');

for m = 1:nX % Loop over rotor angles
xe = N*angleVec(m)*pi/180; % Electrical angle in radians
[~, ~, torque] = invoke(mcad, 'GetMagneticGraphPoint', 'TorqueVW',m-1);
[~, ~, fluxA] = invoke(mcad, 'GetMagneticGraphPoint', 'FluxLinkageloadP
fluxAmat(i,j,m) = fluxA;
torqueMat(i,j,m) = torque;

end

end

end 33
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Electric Motor Design Example
Control Strategies for BEV Motor Design

- PMSM using imported FEM data & optimized Field-Oriented Control (FOC)

- Simscape Electrical nonlinear motor model in the form of tabulated flux
linkages and Steinmetz coefficients

Tast Scanario

J_ Load Torqud

Siep Load Torque

e

[
Sh_Controll
i IS ancoder
(reml [Nm] (T Mechanical Lo
& Visualizalion B e—
Mo VWans —-l- irngat GHEE
G i_nbc M Constant Velocity Source
Vg
‘é o PMSM Controller g
* # veraged & I e - [ P
= 'y £
=z = i abe PISM 3 - ﬂ I3t
2 L. - E y R L E R + - :
- - = Load Torgue
DC Supply -i c -‘. t: r | Load Imertia
Currant Sensor # I
Invertar v
PMSM
{4+ Case Temperature
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Electric Motor Design Example
Component, Controls, and System

Motor Efficiency Improvements With Tuned Control Parameters

version 21.2.1.1 (1.88 MB) by Angel Gonzalez Llacer

PMSM drive using imported FEM data and optimized Field-Oriented Control (FOC) parameters.
https://github.com/mathworks/pmsm-drive-optimization

Simscape enables detailed motor design along with it's power electronics & provides workflows
to integrate component model into system level models

Battery Electric Vehicle Model in Simscape

| — version 1.2.1 (9.08 MB) by Isaac lto ELEAES

A Battery Electric Vehicle (BEV) model in Simscape

https://github.com/mathworks/Simscape-Battery-Electric-Vehicle-Model

35
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Learn More

More on Simscape Electrical, Fluids, and Driveline examples

Selected Examples in Simscape Product Family @
- Battery Thermal Management : ee_lithium_pack cooling Fluids
- Battery Thermal Runaway : ssc_lithium_pack thermalRunaway e

* Fuel cells from a Detailed Chemistry perspective : ssc_fuel cell
* Fuel cells from a Systems perspective : ee_fuel cell
 PMSM electrothermal : ee_pmsm_drive_thermal
« PMSM faults : ee_motor_pmsm_faulted
Selected Examples on MATLAB Central
Battery Electric Vehicle model in Simscape
Hybrid Electric Vehicle model in Simscape
Battery pack design solutions for BEVs in Simscape
Motor efficiency improvements with tuned control parameters
Webinars
Integrating FEM motor data into Simscape Electrical
Fuel cell integration for electrified propulsion



https://www.mathworks.com/help/physmod/sps/electronic-mechatronic-and-power-application-examples.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/physmod/hydro/application-examples.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/physmod/sdl/applications.html
https://www.mathworks.com/matlabcentral/fileexchange/82250-battery-electric-vehicle-model-in-simscape?s_tid=prof_contriblnk
https://www.mathworks.com/matlabcentral/fileexchange/92820-hybrid-electric-vehicle-model-in-simscape?s_tid=prof_contriblnk
https://www.mathworks.com/matlabcentral/fileexchange/82330-battery-pack-design-solution-for-battery-evs-in-simscape
https://www.mathworks.com/matlabcentral/fileexchange/104840-motor-efficiency-improvements-with-tuned-control-parameters?s_tid=prof_contriblnk
https://www.mathworks.com/videos/integrating-fem-motor-data-simscape-electrical-1638987531511.html?s_tid=srchtitle
https://www.mathworks.com/videos/fuel-cell-integration-for-electrified-propulsion-1651589963368.html?s_tid=srchtitle
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AC Charging

« EVSE delivers low/medium AC power to the vehicle
= Vehicle coverts AC power to DC power for battery charging

Basic Properties:

State of Charge
AC_ Battery Voltage
Ch arging High Voltage I Temperature
Station Contactors

-+ Communications

s Power Line AC
e Power Line DC

38
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DC Charging

« EVSE delivers high DC power to the vehicle
= Vehicle directly uses the DC power for battery charging.

High Voltage : I
DC |[¢ --- Contactors Basic Properties:
- Coordinator Batter State of Charge
Charg I ng T T g > y Vo|tage
Station Temperature

________ -+ Communications

s Power Line AC

s Power Line DC

39
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Wireless Charging

« EVSE Induces low/medium AC power on the vehicle
= Vehicle converts AC power to DC power for battery charging

Wireless
Charging

Wireless
Charging
Station

Converter

Basic Properties:
State of Charge
Voltage
Temperature

Charging
Coordinator

High Voltage
Contactors

________ -+ Communications

s Power Line AC
e Power Line DC

40
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Example: DC Fast Charger

Model Overview

Grid DC Fast Charging Station EV Measurement Panel

DC bus Voltage(V)

= B> L {3
. =, 2 = outut urent (- Tbat ] =
— ABC1 m a |1+ O+ + :
[l | | Van [ozer > o p—T Charging Voltage(V)
.60, 49 Switch
[ S e T [y csparon 1o T =
" foge - | - AR Charging Current(A)
Ve fvad) J—m soc < [500) »
ABC2
¢+4fx)=0 Filter Front end converter 'DC-DC converter EV Battery
& with galvanic isolation St
—_'?T AC measurements -

8 =
F

._’ labe Current (A)
(o _>-#{ Curentinput [t _>——»
Angle m
Angireq mabc GatePulse (Gate] o e
- . I
DC Fast Charger for Electric Vehicle Vsd ¢ |—>{curenmterence 2 \
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Power Converter Control Design: Workflow Tasks
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Modeling and Controlling DC-AC Grid-Tie Inverters

Discrete,
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MATLAB EXP
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Automatic Code Generation
Microcontroller

« Use Embedded Coder and C2000 hardware support package

Combine Simulink Algorithms Build and .
with J Auto-generate implement using Operation Check
C code with TI C2000
C2000 10 Blocks CCS
> = ';g?’- Code Composer™ Studio v6 C Sy
- 2000
BI "l gl g B & e i SM320F28335
= @m% R R == .
MPPT V?C‘D%Emsltl BcuostP %)&verler | i ‘Q”I,\ X :\':' eners
dalv oltage ntroller
Perturb and Observe
MPPT
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ABB Accelerates the Delivery of Large-Scale, Grid-
Connected Inverter Products with Model-Based Design

Challenge
Accelerate the design and delivery of large, grid-connected
power inverter products

Solution

Use Model-Based Design to model, simulate, and generate
control software for modular, scalable power electronic
building blocks

Results
= Prototypes delivered in two weeks, not three months
= Defect-free, optimized code generated
= Potential damage to test equipment mitigated

MATLAB E>

A cabinet of Power Electronic
Building Blocks (PEBBS).

“Simulink and Embedded Coder enabled us to open the door to
new markets. With increased productivity from extensive
simulation and efficient code generation, we have confidence in
our ability to produce the systems that larger customers are
asking for in the time frames they want.”

- Dr. Robert Turner, ABB
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SuperGrid Institute: An efficient and
compact power converter to enable the
supergrids of the future

Challenge
Design and implement a DC-DC power converter using
SiC transistors that would operate at 20kHz

Solution

Model-Based Design with Simulink and HDL Coder to
model, verify, and implement the controller on a
Speedgoat real-time target

Results
= Less than 12 months to test a compact 1 kV, 100 kW
DC-DC power converter with an efficiency of 98%

= Fast design iterations using HDL code generation
from model to FPGA

MATLAEB

“The transition from design model to real-time software was very
fast thanks to the complete compatibility between MATLAB &
Simulink and Speedgoat. The Speedgoat target machine
provides fast and robust control of the switching semiconductors
in a difficult electromagnetic environment.”

- Piotr Dworakowski, Power Converters team leader
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Sandia National Laboratories Simulates
Hawail Microgrid and Photovoltaic Systems

Challenge

Evaluate the battery capacity and control systems required for reliable
operation of a new solar power generation facility

Solution

Use Simulink and Simscape Electrical to model and simulate microgrid
distribution systems with photovoltaic sources

Results
= Model development time cut by 80%
= Costs reduced through battery right-sizing
= Simulation accuracy verified with real data

“MATLAB, Simulink, and Simscape Electrical enable
mechanical, power, and controls engineers to work together
using the same tools, which helps in a multidisciplinary
environment like ours.”

- Ben Schenkman, Sandia
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Microgrid System Level Simulation
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Large Scale Power Grid Simulations
Leveraging MATLAB Scripting
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Layers of Control in Microgrids Applications

Control Transients

Hours

« Peak Shaving/Load Leveling
* Energy Markets

* Integration of Renewables

* Islanding Operation

Seconds

« Voltage/Frequency Regulation
« Transient Smoothing
« Reactive Power Control

m/u-Seconds

 Switched-Mode Control
 Harmonic Analysis

Load
Demand

Grid Freq.

60.1 Hz
60 Hz

59.9 Hz

MATLAB

A

Max Load

Peak Shaving

Time

A Absorb Power . '

Frequency Regulation Supply Power
>

Time

50




Real-Time Simulation for Microgrids

Hardware in-the-Loop (HIL)

Test before Grid Integration

MATLAB EXF
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From Desktop to Real-time
Model Based Design with Simulink

Design and optimize Generate code
controls using electrical for the plant

systems simulation
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MATLAB EXP

Test the control
hardware using HIL
simulation

REAL-TIME SIMULATION OF PLANT MODEL

T |
HIL System

sewew
Inverter Controller

Device Under Test
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Key Takeaways

Speeding up journey from an idea to implementation!

Iterating on new ideas faster using Model Based Design
— Design with simulation

— Prototype on real-time hardware

— Generate code for production

Varying model fidelity based on your needs

Assessing technology readiness
— Solar, Wind, Energy Storage
— Power Electronics & Control Architectures
— Energy Management Systems, Economic Dispatch

MATI
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Model-Based Design Adoption

Model Usage

MATLAB EXIPO

Modeling
and Simulation
Syste-matlc G
Testing of —
Algorithms Verification
Simulating
System
Algorithms with . Y .
System Models Simulation
Developing Algorithm
Algorithms Modeling

Real-Time
Simulation and Testing

Production Code
Development
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MATI

MATLAB Expo Technology Booths
Electrification - From Prototyping to Production

& Simscape Vehicle Templates
* Electric Two-Wheeler Development
w Embedded Software Development for Motor Control

ﬁ Power Conversion Application Deployment on STM32 Processors

E Deploying Motor Control Algorithms to a TI C2000 Dual-Core Microcontroller & Infineon
= AURIX TC4x
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2W EV Webinar Series
Sept. 20, 21, 22

T AT

20 Sep System Modelling & Simulation of an Electric Two-Wheeler: A Journey from
2022 Virtual Prototyping to Production

Speakers: Abhisek Roy, MathWorks,

Prasanna Deshpande, MathWorks

21 Sep Addressing Challenges Involved in EV Battery Modelling, its Thermal Analysis
2022 and BMS Design

Speakers: Abhisek Roy, MathWorks,

Shripad Chandrachood, MathWorks

22 Sep Designing Motor Control Algorithms for Optimum Performance and Efficient
2022 Operation of an Electric Two-Wheeler

Speakers: Rahul Choudhary, MathWorks,

Ananth Kumar Selvaraj, MathWorks




Self-Paced Online Training
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MATLAB
Onramp

Simulink
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with MATLAB

Deep Learning
with MATLAB

matlabacademy.mathworks.com

MATLAB EXIPO
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