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Machine Learning is a key technology driving the AI megatrend 

ARTIFICIAL INTELLIGENCE (AI)

Any technique that enables 

machines to mimic human 

intelligence

MACHINE LEARNING

Statistical methods that enable machines to “learn” tasks from data without explicitly 

programming

UNSUPERVISED LEARNING 

(No Labeled Data )
SUPERVISED LEARNING 

(Labeled Data )

REINFORCEMENT LEARNING

(Interaction Data) 

DEEP LEARNING

(Neural networks with 

many layers)

https://www.mathworks.com/discovery/unsupervised-learning.html
https://www.mathworks.com/discovery/reinforcement-learning.html
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Brief Overview for AI-driven system design

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Integration with 

complex systems

System verification 

and validation

System simulation

Simulation & Test

Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud, desktop

Deployment

• Labeller apps

• Unreal co-simulation

• Simscape

• Deep network designer

• Experiment manager

• Classification learner

• Simulink as integration 

platform
• CPUs, GPUs, FPGAs

• Cloud (on-premise, 

service providers)
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Drass Develops Deep Learning System for Real-Time Object 

Detection in Maritime Environments

Challenge
Help ship operators monitor sea environments and detect 

objects, obstacles, and other ships

Solution

Create an object-detection deep learning model that can 

be deployed on ships and run-in real time

Results
▪ Data labeling automated

▪ Development time reduced

▪ Flexible and reproducible framework established

“From data annotation to choosing, training, testing, 

and fine-tuning our deep learning model, MATLAB 

had all the tools we needed—and GPU Coder 

enabled us to rapidly deploy to our NVIDIA GPUs 

even though we had limited GPU experience.”

- Valerio Imbriolo, Drass Group

First day of object detection tests with optronic system 

prototype.

Link to user story

https://www.mathworks.com/company/user_stories/drass-develops-deep-learning-system-for-real-time-object-detection-in-maritime-environments.html
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Drass Develops Deep Learning System for Real-Time Object 

Detection in Maritime Environments

Challenge
Help ship operators monitor sea environments and detect 

objects, obstacles, and other ships

Solution

Create an object-detection deep learning model that can 

be deployed on ships and run-in real time

Results
▪ Data labeling automated (From 3 mins per frame to 0.3 

secs per frame)

▪ Development time reduced (From 18 months to 10 

months)

▪ Flexible and reproducible framework established  

(modify, retrain, update and reintegrate with minimal 

effort)

“From data annotation to choosing, training, testing, 

and fine-tuning our deep learning model, MATLAB 

had all the tools we needed—and GPU Coder 

enabled us to rapidly deploy to our NVIDIA GPUs 

even though we had limited GPU experience.”

- Valerio Imbriolo, Drass Group

First day of object detection tests with optronic system 

prototype.

Link to user story

https://www.mathworks.com/company/user_stories/drass-develops-deep-learning-system-for-real-time-object-detection-in-maritime-environments.html
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Scaling AI-driven systems

Dev Ops

Development Operations

DESIGN

BUILD

TEST

DEPLOY

OPERATE

MONITOR
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Electric batteries are everywhere. Effective management increases 

vehicle availability and reduces costs.

Hybrid electric city bus

Autonomous electric tractor

Industrial robots
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Monitoring battery health is good. Predicting it is better.
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Predictive maintenance enables downtime to be scheduled rather 

than disruptive.

መ𝑓(𝑥)
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Understanding the lifecycle of a machine learning solution lets you 

know if you’ve automated all of it.

Dev Ops

Development Operations

DESIGN

BUILD

TEST

DEPLOY

OPERATE

MONITOR
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Drift Detection
Model-based 

labeling

መ𝑓(𝑥)“AutoML”

Automating development requires deep knowledge of the domain.

DESIGN

BUILD

TEST

DEPLOY

OPERATE

MONITOR

Development Operations

Operate

Monitor

Feedback

Deploy

Design

Build

Test
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Automatic drift detection compares the observed data to the training 

data to determine when retraining is required.

መ𝑓(𝑥)

Drift Detection Model Training
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High-fidelity physical models accurately label observed data. 
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Model Tuning

Optimize 

Hyperparameters

Select 

Features

Assess 

Performance

Preprocess 

Data
Deploy & 

Integrate

Model 

Selection & 

Training

Engineer 

Features

AutoML selects the model and hyperparameters that perform best 

on the drifting data.
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Let us remind ourselves the blueprint of the automated solution.

Drift Detection
Model-based 

labeling

መ𝑓(𝑥)“AutoML”

DESIGN

BUILD

TEST

DEPLOY

OPERATE

MONITOR

Development Operations
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መ𝑓(𝑥)

“AutoML”

Monitoring

Streaming Service
Metrics 

Dashboard

Model-based 

labeling

Let us remind ourselves the blueprint of the automated solution.
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Data is everything for Machine Learning.
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Physics-based simulation allows realistic data generation.
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Physics-based simulation allows realistic data generation.
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Physics-based simulation allows realistic data generation.

Data 

Collection
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Physics-based simulation allows realistic data generation.

Data 

Generation



2121

AutoML paves the way for automated training of data-driven algorithms. 
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AutoML “automagically” finds the right model.

𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛

Kernel Scale = 1.2
ε = 0.2

Kernel Function = ‘exponential’
𝜎 = 3.5

NumLearningCycles = 200
LearnRate = 0.005

Bayesian Optimization/ASHA
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AutoML paves the way for automated training of data-driven algorithms. 
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AutoML paves the way for automated training of data-driven algorithms. 
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Machine Learning models generally assume training data is static.

X𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛
X𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑌
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Static data assumption rarely holds in the real world.
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Detecting concept drift is challenging, detecting data drift is easier 

and practical.

∃ 𝑡: 𝑃𝑡 𝑋, 𝑌 ≠ 𝑃𝑡+1 𝑋, 𝑌

Baseline Target

Features Labels/Responses
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Drift monitoring periodically checks for and detects changes in data.
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Per-feature drift can be visualized, interpreted and assessed in an 

automated way or with human supervision.
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Drift monitoring system enhances automated solution with the ability 

to forecast when models may require retraining.
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Drift monitoring system enhances automated solution with the ability 

to forecast when models may require retraining.
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Model-based labeling system is high fidelity, but slow. Used for 

labeling only when prompted.
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Drift resulting in model performance degradation triggers retraining.
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Drift resulting in model performance degradation triggers retraining.
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Model in production is replaced if challenger model has better 

performance. 

መ𝑓𝑐ℎ𝑎𝑚𝑝𝑖𝑜𝑛(𝑥)MSE , 𝑌<
?

MSE , 𝑌



3636

Model in production is replaced if challenger model has better 

performance. 
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The train-deploy-monitor-label cycle automatically works on its own.
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Production system architecture mirrors the stages of the Dev Ops 

cycle.

Predict

Detect

Drift
Label

Auto

ML
Train

Train
Train

Train

Observed

LabeledTraining

DESIGN

BUILD

TEST

DEPLOY

OPERATE

MONITOR

Development Operations
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Off the shelf components minimize development effort.

Predict

Detect

Drift
Label

Auto

ML
Train

Train
Train

Train

Observed

LabeledTraining

Simulink

MATLAB

Worker processes

MATLAB

Production

Server

Worker processes

MATLAB

Production

Server

Redis

MATLAB Parallel

Server

InfluxDB InfluxDB

InfluxDB
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Data management drove the architecture. The development 

environment needs Dev Ops-specific features.

መ𝑓(𝑥) መ𝑓(𝑥)መ𝑓(𝑥)መ𝑓(𝑥)

Auto

ML
Predict

f(x)

Production

Environment

Proxy MATLAB

Desktop
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Prediction requires a complete frame of observations from a single 

battery, but the stream may not oblige.

መ𝑓(𝑥)
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Temporary

Storage

Build complete frames efficiently with message grouping and 

accumulation.

መ𝑓(𝑥)
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Per-battery stream partitioning enables horizontal scaling.

መ𝑓(𝑥) መ𝑓(𝑥)መ𝑓(𝑥)
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Auto

ML

Model registry enables multiple predictors to update simultaneously.

Predict

PredictPredict

Predict

Predict
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Debug and test with desktop server before deploying to production.
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SaveSave

Interactive access to streaming data simplifies model development.

f(x)Predictive

Maintenance

Model

Read

Write

Load

health.mat

battery.csv

Predictive

Maintenance

Model

Data and Results:

Files

Battery Data Stream

Battery Health Results Stream

Data and Results:

Streams

f(x)
Load
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Schema-controlled data import transforms JSON-encoded 

streaming data into native types.

>> ks = kafkaStream(host, port, topic);

>> tt = readtimetable(ks)
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Deployable physical models enable automation and speed 

retraining.

Worker processes

MATLAB

Production

Server
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f(x)

Production

Environment

Proxy MATLAB

Desktop

Your development toolchain needs a virtual production environment, 

native access to streams and deployable physical models.
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Automating the Dev Ops cycle
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Development Operations

DESIGN

BUILD

TEST

DEPLOY

OPERATE

MONITOR

Automate the entire Dev Ops cycle and your machine learning 

models can change for the better, by themselves.

Drift Detection
Physics-based 

labeling

መ𝑓(𝑥)“AutoML”
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Thank you
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